(1)计算:|3-12|+(62+2)0+cos230°-4sin60°;(2)解不等式组:x-34+6≥x①4-5(x-2)<8-2②.-数学
题文
(1)计算:|3-
(2)解不等式组:
|
答案
(1)原式=2
(2)由①式得:x-3≥4x-24,x≤7 由②式得:4-5x+10<8-2x,x>2 ∴原不等式组的解集为2<x≤7. |
据专家权威分析,试题“(1)计算:|3-12|+(62+2)0+cos230°-4sin60°;(2)解不等式组:x-34+6..”主要考查你对 绝对值,一元一次不等式组的解法,零指数幂(负指数幂和指数为1),特殊角三角函数值 等考点的理解。关于这些考点的“档案”如下:
绝对值一元一次不等式组的解法零指数幂(负指数幂和指数为1)特殊角三角函数值
考点名称:绝对值
- 绝对值定义:
在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。
绝对值用“||”来表示。
在数轴上,表示一个数a的点到数b的点之间的距离的值,叫做a-b的绝对值,记作|a-b|。 - 绝对值的意义:
1、几何的意义:
在数轴上,一个数到原点的距离叫做该数的绝对值.如:5指在数轴上表示数5的点与原点的距离,这个距离是5,所以5的绝对值是5。
2、代数的意义:
非负数(正数和0,)
非负数的绝对值是它本身,非正数的绝对值是它的相反数。
互为相反数的两个数的绝对值相等。
a的绝对值用“|a |”表示.读作“a的绝对值”。
实数a的绝对值永远是非负数,即|a |≥0。
互为相反数的两个数的绝对值相等,即|-a|=|a|。
若a为正数,则满足|x|=a的x有两个值±a,如|x|=3,,则x=±3. 绝对值的有关性质:
①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;
②绝对值等于0的数只有一个,就是0;
③绝对值等于同一个正数的数有两个,这两个数互为相反数;
④互为相反数的两个数的绝对值相等。
绝对值的化简:
绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。
①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:
│a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)
②整数就找到这两个数的相同因数;
③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;
④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。
考点名称:一元一次不等式组的解法
一元一次不等式组解集:
一元一次不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集。
注:当任何数x都不能使各个不等式同时成立,我们就说这个一元一次不等式组无解或其解集为空集。
例如:
不等式x-5≤-1的解集为x≤4;
不等式x﹥0的解集是所有非零实数。
解法:求不等式组的解集的过程,叫做解不等式组。- 求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被两条不等式解集的区域都覆盖的部分;
一般由两个一元一次不等式组成的不等式组由四种基本类型确定,它们的解集、数轴表示如下表:(设a<b) 一元一次不等式组的解答步骤:
(1)分别求出不等式组中各个不等式的解集;
(2)将这些不等式的解集在同一个数轴上表示出来,找出它们的的公共部分;
(3)根据找出的公共部分写出不等式组的解集,若没有公共部分,说明不等式组无解。
解法诀窍:
同大取大 ;
例如:
X>-1
X>2
不等式组的解集是X>2
同小取小;
例如:
X<-4
X<-6
不等式组的解集是X<-6
大小小大中间找;
例如,
x<2,x>1,不等式组的解集是1<x<2
大大小小不用找
例如,
x<2,x>3,不等式组无解一元一次不等式组的整数解:
一元一次不等式组的整数解是指在不等式组中各个不等式的解集中满足整数条件的解的公共部分。
求一元一次不等式组的整数解的一般步骤:先求出不等式组的解集,再从解集中找出所有整数解,其中要注意整数解的取值范围不要搞错。
例如
所以原不等式的整数解为1,2。
考点名称:零指数幂(负指数幂和指数为1)
- 零指数幂定义:任何不等于零的数的零次幂都等于1。
负指数幂的定义:任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数。
指数为1:任何不等于零的数的1次幂,所得结果都等于这个数的本身。
考点名称:特殊角三角函数值
- 特殊角三角函数值表:
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |