下列给出的4个命题:命题1若|a|=|b|,则a|a|=b|b|;命题2若a2-5a+5=0,则(1-a)2=a-1;命题3若x的不等式(m+3)x>1的解集是x<1m+3,则m<-3;命题4若方程x2+mx-1=0中m>0,则该方程-数学

首页 > 考试 > 数学 > 初中数学 > 绝对值/2019-02-12 / 加入收藏 / 阅读 [打印]

①不等式的解是指某一范围内的某个数,用它来代替不等式中的未知数,不等式成立。
②要判断某个未知数的值是不是不等式的解,可直接将该值代入等式的左、右两边,看不等式是否成立,若成立,则是;否则不是。
③一般地,一个不等式的解不止一个,往往有无数个,如所有大于3的数都是x>3的解,但也存在特殊情况,如|x|≦0,就只有一个解,为x=0

不等式的解集和不等式的解是两个不同的概念。
①不等式的解集一般是一个取值范围,在这个范围内的每一个数值都是不等式的一个解,不等式一般有无数个解。
②不等式的解集包含两方面的意思:
解集中的任何一个数值,都能使不等式成立;解集外的任何一个数值,都不能使不等式成立。(即不等式不成立)
③不等式的解集可以在数轴上直观的表示出来,如不等式x-1<2的解集是x<3,可以用数轴上表示3的点左边部分来表示,在数轴上表示3的点的位置上画空心圆圈,表示不包括这一点。

  • 一元一次不等式的解法
    解一元一次不等式与解一元一次方程的方法步骤类似,只是在利用不等式基本性质3对不等式进行变形时,要改变不等式的符号。
    有两种解题思路:
    (1)可以利用不等式的基本性质,设法将未知数保留在不等式的一边,其他项在另一边;
    (2)采用解一元一次方程的解题步骤:去分母、去括号、移项、合并同类项、系数化为1等步骤。 

    解一元一次不等式的一般顺序:
    (1)去分母 (运用不等式性质2、3)   
    (2)去括号   
    (3)移项 (运用不等式性质1)   
    (4)合并同类项。   
    (5)将未知数的系数化为1 (运用不等式性质2、3)   
    (6)有些时候需要在数轴上表示不等式的解集
     
    不等式解集的表示方法:
    (1) 用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来。
    例如:x-1≤2的解集是x≤3。   
    (2) 用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解。
    用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。

  • 考点名称:二次根式的定义

    • 二次根式:
      我们把形如叫做二次根式。
      二次根式必须满足:
      含有二次根号“”;
      被开方数a必须是非负数。

      确定二次根式中被开方数的取值范围:
      要是二次根式有意义,被开方数a必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围。

    • 二次根式性质:
      (1)a≥0 ; ≥0 (双重非负性 );

      (2)

      (3)
                                  0(a=0);

      (4)

      (5)

    • 二次根式判定:
      ①二次根式必须有二次根号,如等;
      ②二次根式中,被开方数a可以是具体的一个数,也可以是代数式;
      ③二次根式定义中a≥0 是定义组成的一部分,不能省略;
      ④二次根式是一个非负数;
      ⑤二次根式与算术平方根有着内在的联系,(a≥0 )就表示a的算术平方根。

      二次根式的应用:
      主要体现在两个方面:
      (1)利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;
      (2)利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。

    考点名称:一元二次方程根与系数的关系

    • 一元二次方程根与系数的关系:
      如果方程 的两个实数根是那么
      也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

    • 一元二次方程根与系数关系的推论:
      1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
      2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
      提示:
      ①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
      ②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
      ③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0