已知点P(x+1,2x-1)关于x轴对称的点在第一象限,试化简:|x+2|+|1-x|.-数学

首页 > 考试 > 数学 > 初中数学 > 绝对值/2019-02-12 / 加入收藏 / 阅读 [打印]

题文

已知点P(x+1,2x-1)关于x轴对称的点在第一象限,试化简:|x+2|+|1-x|.
题型:解答题  难度:中档

答案

∵点P(x+1,2x-1)关于x轴对称的点P′(x+1,-2x+1)在第一象限,

x+1>0
-2x+1>0

解得-1<x<
1
2

∴|x+2|+|1-x|=x+2+1-x=3.

据专家权威分析,试题“已知点P(x+1,2x-1)关于x轴对称的点在第一象限,试化简:|x+2|+|1..”主要考查你对  绝对值,用坐标表示轴对称  等考点的理解。关于这些考点的“档案”如下:

绝对值用坐标表示轴对称

考点名称:绝对值

  • 绝对值定义:
    在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。
    绝对值用“||”来表示。
    在数轴上,表示一个数a的点到数b的点之间的距离的值,叫做a-b的绝对值,记作|a-b|。

  • 绝对值的意义:
    1、几何的意义:
    在数轴上,一个数到原点的距离叫做该数的绝对值.如:5指在数轴上表示数5的点与原点的距离,这个距离是5,所以5的绝对值是5。

    2、代数的意义:
    非负数(正数和0,)
    非负数的绝对值是它本身,非正数的绝对值是它的相反数。
    互为相反数的两个数的绝对值相等。
    a的绝对值用“|a |”表示.读作“a的绝对值”。
    实数a的绝对值永远是非负数,即|a |≥0。
    互为相反数的两个数的绝对值相等,即|-a|=|a|。
    若a为正数,则满足|x|=a的x有两个值±a,如|x|=3,,则x=±3.

  • 绝对值的有关性质:
    ①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;
    ②绝对值等于0的数只有一个,就是0;
    ③绝对值等于同一个正数的数有两个,这两个数互为相反数;
    ④互为相反数的两个数的绝对值相等。

    绝对值的化简:
    绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。
    ①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:
    │a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)
    ②整数就找到这两个数的相同因数;
    ③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;
    ④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。

考点名称:用坐标表示轴对称

  • 用坐标表示轴对称:
    关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;
    关于y轴对称的点的坐标的特点是:横坐标互为相反数,纵坐标不变。

    点(x, y)关于x轴对称的点的坐标为x,-y ,
    点(x, y)关于y轴对称的点的坐标为-x,y

    例如图中:
    点A(2,3)关于x轴对称的点的坐标为A,,(-2,3);
    点A(2,3)关于x轴对称的点的坐标为A,(2,3)。

  • 点拨:
    ①写出平面坐标系中一个点关于x轴和y轴对称的点的坐标:
    关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点横坐标互为相反数,纵坐标相等。
    ②画出一个图形关于x轴或y轴对称:
    先求出已知图形中的一些特殊点(如多边形的顶点)的对应点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形。