已知x=-3是方程|2x-1|-3|m|=-1的解,求代数式3m2-m-1的值.-数学

首页 > 考试 > 数学 > 初中数学 > 绝对值/2019-02-12 / 加入收藏 / 阅读 [打印]

题文

已知x=-3是方程|2x-1|-3|m|=-1的解,求代数式3m2-m-1的值.
题型:解答题  难度:中档

答案

把x=-3代入方程|2x-1|-3|m|=-1得:
|2×(-3)-1|-3|m|=-1,
7-3|m|=-1,
解得:m=±
8
3

把m=±
8
3
代入3m2-m-1得:
3×(
8
3
)2-
8
3
-1=
53
3

或:3×(-
8
3
)2-(-
8
3
)-1=23;
所以代数式3m2-m-1的值是:
53
3
或23.

据专家权威分析,试题“已知x=-3是方程|2x-1|-3|m|=-1的解,求代数式3m2-m-1的值.-数学-..”主要考查你对  绝对值,代数式的求值 ,方程的解  等考点的理解。关于这些考点的“档案”如下:

绝对值代数式的求值 方程的解

考点名称:绝对值

  • 绝对值定义:
    在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。
    绝对值用“||”来表示。
    在数轴上,表示一个数a的点到数b的点之间的距离的值,叫做a-b的绝对值,记作|a-b|。

  • 绝对值的意义:
    1、几何的意义:
    在数轴上,一个数到原点的距离叫做该数的绝对值.如:5指在数轴上表示数5的点与原点的距离,这个距离是5,所以5的绝对值是5。

    2、代数的意义:
    非负数(正数和0,)
    非负数的绝对值是它本身,非正数的绝对值是它的相反数。
    互为相反数的两个数的绝对值相等。
    a的绝对值用“|a |”表示.读作“a的绝对值”。
    实数a的绝对值永远是非负数,即|a |≥0。
    互为相反数的两个数的绝对值相等,即|-a|=|a|。
    若a为正数,则满足|x|=a的x有两个值±a,如|x|=3,,则x=±3.

  • 绝对值的有关性质:
    ①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;
    ②绝对值等于0的数只有一个,就是0;
    ③绝对值等于同一个正数的数有两个,这两个数互为相反数;
    ④互为相反数的两个数的绝对值相等。

    绝对值的化简:
    绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。
    ①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:
    │a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)
    ②整数就找到这两个数的相同因数;
    ③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;
    ④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。

考点名称:代数式的求值

  • 代数式的值:
    用数值代替代数式的字母,按照代数式指明的运算,计算出结果才,叫做代数式的值。

  • 代数式求值的步骤:
    (1)代入;
    (2)计算。
    常用的代入方法有直接代入法与整体代入法。
    注:代数式的值的取值条件:
    (1)不能使代数式失去意义;
    (2)不能使所表示的实际问题失去意义。

  • 求代数式的值的方法:
    ①给出代数式中所有字母的值,该类题一般是先化简代数式,再代入字母的值,然后计算。
    ②给出代数式中所含几个字母之间的关系,不直接给出字母的值,该类题一般是把所要求的代数式通过恒等变形,转化成为用已知关系表示的形式。
    ③在给定条件中,字母之间的关系不明显,字母的值隐含在题设条件中,该类题应先由题设条件求出字母的值,再求代数式的值。

考点名称:方程的解

  • 方程的解:
    是指所有未知数的总称,方程的根是指一元方程的解,两者通常可以通用。
    1、方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解。
    2、解方程:求方程解的过程。
    3、方程的解与解方程不同:方程的解是未知数的值,而解方程指的是一个过程,两者是不同的。