(1)解不等式3x-2≥4,并将解集在数轴上表示出来.(2)化简:.-九年级数学

题文

(1)解不等式3x-2≥4,并将解集在数轴上表示出来.
(2)化简:
题型:计算题  难度:中档

答案

解:(1)移项得,3x>6,系数化为1得,x>2,
在数轴上表示为.
(2)原式

据专家权威分析,试题“(1)解不等式3x-2≥4,并将解集在数轴上表示出来.(2)化简:.-九年级..”主要考查你对  一元一次不等式组的解法,分式的乘除  等考点的理解。关于这些考点的“档案”如下:

一元一次不等式组的解法分式的乘除

考点名称:一元一次不等式组的解法

  • 一元一次不等式组解集:
    一元一次不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集。
    注:当任何数x都不能使各个不等式同时成立,我们就说这个一元一次不等式组无解或其解集为空集。
    例如:
    不等式x-5≤-1的解集为x≤4;
    不等式x﹥0的解集是所有非零实数。
    解法:求不等式组的解集的过程,叫做解不等式组。

  • 求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被两条不等式解集的区域都覆盖的部分;
    一般由两个一元一次不等式组成的不等式组由四种基本类型确定,它们的解集、数轴表示如下表:(设a<b)

  • 一元一次不等式组的解答步骤:
    (1)分别求出不等式组中各个不等式的解集;
    (2)将这些不等式的解集在同一个数轴上表示出来,找出它们的的公共部分;
    (3)根据找出的公共部分写出不等式组的解集,若没有公共部分,说明不等式组无解。

    解法诀窍:
    同大取大 ;
    例如:
    X>-1
    X>2
    不等式组的解集是X>2

    同小取小;
    例如:
    X<-4
    X<-6
    不等式组的解集是X<-6

    大小小大中间找;
    例如,
    x<2,x>1,不等式组的解集是1<x<2

    大大小小不用找
    例如,
    x<2,x>3,不等式组无解

  • 一元一次不等式组的整数解:
    一元一次不等式组的整数解是指在不等式组中各个不等式的解集中满足整数条件的解的公共部分。
    求一元一次不等式组的整数解的一般步骤:先求出不等式组的解集,再从解集中找出所有整数解,其中要注意整数解的取值范围不要搞错。
    例如



    所以原不等式的整数解为1,2。

考点名称:分式的乘除

  • 分式的乘除法则:
    1、分式的乘法法则:
    分式乘分式,用分子的积作为积的分子,分母的积作为分母。
    用字母表示为:
    2、分式的除法法则:
    分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘;除以一个分式,等于乘以这个分式的倒数。
    用式子表示为:(b,c,d均不为零)
    3、分式的乘方法则:分式乘方要把分子、分母分别乘方。
    用式子表示为:(n为正整数),其中b≠0,a,b可以代表数,也可以代表代数式。

  •  

  • 分式乘除的解题步骤:
    分式乘法:
    (1)先确定积的符号:数出整个参与运算的式子中负号的个数,如果有偶数个负号,积为正;
    如果有奇数个负号,积为负;
    (2)计算分子与分子的积;
    (3)计算分母与分母的积;
    (4)把积中的分子,分母进行约分,化成最简分式或整式。
    在解题时,这些步骤是连贯的。

    分式除法
    要注意两个变化:
    一是运算符号的变化,由原来的除法运算变成乘法运算;
    二是除式的分子、分母位置的变化,由原来的分子变成乘法中的分母,原来的分母变成乘法中的分子。
    同学们也可以这样来理解这条法则:
    两个分式相除,用被除式的分子乘以除式的分母,作为商的分子,用被除式的分母乘以除式的分子,作为商的分母。
    这样,就和分式的乘法法则在表述形式上相近了,就好记忆些。

    基本步骤:
    (1)先确定积的符号:数出整个参与运算的式子中负号的个数,如果有偶数个负号,积为正;
    如果有奇数个负号,积为负;
    (2)计算被除式的分子与除式的分母的积,作为商的分子;
    (3)计算被除式的分母与除式的分子的积,,作为商的分母;
    (4)把商中的分子,分母进行约分,化成最简分式或整式。
    此法,有点十字相乘的思想。就像比例的计算,内项之积为分子,外项之积为分母。