已知两圆的半径分别是5和6,圆心距x满足不等式组:x+2>x+528x-41<3x+14,则两圆的位置关系是()A.内切B.外切C.相交D.外离-数学

题文

已知两圆的半径分别是5和6,圆心距x满足不等式组:,则两圆的位置关系是(  )
A.内切 B.外切 C.相交 D.外离
题型:单选题  难度:中档

答案

C

据专家权威分析,试题“已知两圆的半径分别是5和6,圆心距x满足不等式组:x+2>x+528x-41<..”主要考查你对  一元一次不等式组的解法,圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)  等考点的理解。关于这些考点的“档案”如下:

一元一次不等式组的解法圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)

考点名称:一元一次不等式组的解法

  • 一元一次不等式组解集:
    一元一次不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集。
    注:当任何数x都不能使各个不等式同时成立,我们就说这个一元一次不等式组无解或其解集为空集。
    例如:
    不等式x-5≤-1的解集为x≤4;
    不等式x﹥0的解集是所有非零实数。
    解法:求不等式组的解集的过程,叫做解不等式组。

  • 求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被两条不等式解集的区域都覆盖的部分;
    一般由两个一元一次不等式组成的不等式组由四种基本类型确定,它们的解集、数轴表示如下表:(设a<b)

  • 一元一次不等式组的解答步骤:
    (1)分别求出不等式组中各个不等式的解集;
    (2)将这些不等式的解集在同一个数轴上表示出来,找出它们的的公共部分;
    (3)根据找出的公共部分写出不等式组的解集,若没有公共部分,说明不等式组无解。

    解法诀窍:
    同大取大 ;
    例如:
    X>-1
    X>2
    不等式组的解集是X>2

    同小取小;
    例如:
    X<-4
    X<-6
    不等式组的解集是X<-6

    大小小大中间找;
    例如,
    x<2,x>1,不等式组的解集是1<x<2

    大大小小不用找
    例如,
    x<2,x>3,不等式组无解

  • 一元一次不等式组的整数解:
    一元一次不等式组的整数解是指在不等式组中各个不等式的解集中满足整数条件的解的公共部分。
    求一元一次不等式组的整数解的一般步骤:先求出不等式组的解集,再从解集中找出所有整数解,其中要注意整数解的取值范围不要搞错。
    例如



    所以原不等式的整数解为1,2。

考点名称:圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)

  • 圆和圆的位置关系:
    如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
    如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
    如果两个圆有两个公共点,那么就说这两个圆相交。

    圆心距:两圆圆心的距离叫做两圆的圆心距。

  • 圆和圆位置关系的性质与判定:
    设两圆的半径分别为R和r,圆心距为d,那么
    两圆外离d>R+r(没有交点)
    两圆外切d=R+r (有一个交点,叫切点)
    两圆相交R-r<d<R+r(R≥r)(有两个交点)
    两圆内切d=R-r(R>r) (有一个交点,叫切点)
    两圆内含d<R-r(R>r)(没有交点)

    两圆相切的性质:
    (1)连心线:两圆圆心的连线。
    (2)两圆相切的性质:相切两圆的连心线必过切点,即两圆圆心、切点三点在一条直线上。