计算:(1)解不等式组:x2>-12x+1≥5(x-1),并把解集在数轴上表示出来.(2)解分式方程:3x-2+x2-x=-2.-数学
题文
计算: (1)解不等式组:
(2)解分式方程:
|
答案
(1)
由①得:x>-2; 由②得:x≤2, 则不等式组的解集为-2<x≤2; (2)去分母得:3-x=-2(x-2), 去括号得:3-x=-2x+4, 解得:x=1, 经检验x=1是分式方程的解. |
据专家权威分析,试题“计算:(1)解不等式组:x2>-12x+1≥5(x-1),并把解集在数轴上表示出来..”主要考查你对 一元一次不等式组的解法,不等式待定系数的取值范围,解分式方程 等考点的理解。关于这些考点的“档案”如下:
一元一次不等式组的解法不等式待定系数的取值范围解分式方程
考点名称:一元一次不等式组的解法
一元一次不等式组解集:
一元一次不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集。
注:当任何数x都不能使各个不等式同时成立,我们就说这个一元一次不等式组无解或其解集为空集。
例如:
不等式x-5≤-1的解集为x≤4;
不等式x﹥0的解集是所有非零实数。
解法:求不等式组的解集的过程,叫做解不等式组。- 求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被两条不等式解集的区域都覆盖的部分;
一般由两个一元一次不等式组成的不等式组由四种基本类型确定,它们的解集、数轴表示如下表:(设a<b) 一元一次不等式组的解答步骤:
(1)分别求出不等式组中各个不等式的解集;
(2)将这些不等式的解集在同一个数轴上表示出来,找出它们的的公共部分;
(3)根据找出的公共部分写出不等式组的解集,若没有公共部分,说明不等式组无解。
解法诀窍:
同大取大 ;
例如:
X>-1
X>2
不等式组的解集是X>2
同小取小;
例如:
X<-4
X<-6
不等式组的解集是X<-6
大小小大中间找;
例如,
x<2,x>1,不等式组的解集是1<x<2
大大小小不用找
例如,
x<2,x>3,不等式组无解一元一次不等式组的整数解:
一元一次不等式组的整数解是指在不等式组中各个不等式的解集中满足整数条件的解的公共部分。
求一元一次不等式组的整数解的一般步骤:先求出不等式组的解集,再从解集中找出所有整数解,其中要注意整数解的取值范围不要搞错。
例如
所以原不等式的整数解为1,2。
考点名称:不等式待定系数的取值范围
- 不等式待定系数的取值范围就是已知不等式或不等式组的解集或特殊解,确定不等式中未知数的系数的取值范围。
- 不等式待定系数的取值范围求法:
一、根据不等式(组)的解集确定字母取值范围
例:
如果关于x的不等式(a+1)x>2a+2.的解集为x<2,则a的取值范围是 ( )
A.a<0 B.a<一l C.a>l D.a>一l
解:将原不等式与其解集进行比较,发现在不等式的变形过程中运用了不等式的基本性质3,因此有a+l<0,得a<一1,故选B.
二、根据不等式组的整数解情况确定字母的取值范围
例:
已知不等式组的整数解只有5、6。求a和b的范围.
解:解不等式组得,借助于数轴,如图:
知: 2+a只能在4与5之间。只能在6与7之间.
∴4≤2+a<5,6<≤7
∴2≤a<3,13<b≤15
三、根据含未知数的代数式的符号确定字母的取值范围
例:
已知2a-3x+1=0,3b-2x-16=0,且a≤4<b,求x的取值范围.
解:由2a-3x+1=0,可得a= ;由3b-2x-16=0,可得b= .
又a≤4<b,
所以, ≤4< ,
解得:-2<x≤3.
四、逆用不等式组解集求解
例:
考点名称:解分式方程
- 解法:
解分式方程的基本思想是把分式方程转化为整式方程,其一般步骤是:
(1)去分母:分式方程两边同乘以方程中各分母的最简公分母,把分式方程转化为整式方程。
(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂)
(2)解方程:解整式方程,得到方程的根;
(3)验根:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;
否则,这个解不是原分式方程的解,是原分式方程的增根。
如果分式本身约分了,也要带进去检验。
在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。
一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.
注意:
(1)注意去分母时,不要漏乘整式项。
(2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。
(3)増根使最简公分母等于0。
分式方程的特殊解法:
换元法:
换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。 解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法。
解分式方程注意:
①解分式方程的基本思想是把分式方程转化为整式方程,通过解整式方程进一步求得分式方程的解;
②用分式方程中的最简公分母同乘方程的两边,从而约去分母,但要注意用最简公分母乘方程两边各项时,切勿漏项;
③解分式方程可能产生使分式方程无意义的情况,那么检验就是解分式方程的必要步骤。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |