先阅读理解下列例题,再按要求完成作业.例题:解一元二次不等式(3x-2)(2x+1)>0.由有理数的乘法法则“两数相乘,同号得正”有①3x-2>02x+1>0或②3x-2<02x+1<0解不等式组①得x>23,解-数学

题文

先阅读理解下列例题,再按要求完成作业.
例题:解一元二次不等式(3x-2)(2x+1)>0.
由有理数的乘法法则“两数相乘,同号得正”有①

3x-2>0
2x+1>0
或②

3x-2<0
2x+1<0
解不等式组①得x>
2
3
,解不等式组②得x<-
1
2

所以一元二次不等式(3x-2)(2x+1)>0的解集是x>
2
3
或x<-
1
2

作业题:(1)求不等式
5x+1
2x-3
<0的解集;
(2)通过阅读例题和做作业题(1),你学会了什么知识和方法?
题型:解答题  难度:中档

答案

(1)由有理数的除法法则“两数相除,异号得负”有

5x+1>0
2x-3<0
或②

5x+1<0
2x-3>0

解不等式组①,得-
1
5
<x<
3
2

解不等式组②,得不等式组②无解,
所以不等式
5x+1
2x-3
<0的解集为-
1
5
<x<
3
2


(2)运用有理数的乘法法则,把一元二次不等式转化为一元一次不等式组来解决;运用有理数的除法法则,把分母中含有未知数的不等式转化为一元一次不等式(组)来解决.

据专家权威分析,试题“先阅读理解下列例题,再按要求完成作业.例题:解一元二次不等式(3..”主要考查你对  一元一次不等式组的解法  等考点的理解。关于这些考点的“档案”如下:

一元一次不等式组的解法

考点名称:一元一次不等式组的解法

  • 一元一次不等式组解集:
    一元一次不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集。
    注:当任何数x都不能使各个不等式同时成立,我们就说这个一元一次不等式组无解或其解集为空集。
    例如:
    不等式x-5≤-1的解集为x≤4;
    不等式x﹥0的解集是所有非零实数。
    解法:求不等式组的解集的过程,叫做解不等式组。

  • 求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被两条不等式解集的区域都覆盖的部分;
    一般由两个一元一次不等式组成的不等式组由四种基本类型确定,它们的解集、数轴表示如下表:(设a<b)

  • 一元一次不等式组的解答步骤:
    (1)分别求出不等式组中各个不等式的解集;
    (2)将这些不等式的解集在同一个数轴上表示出来,找出它们的的公共部分;
    (3)根据找出的公共部分写出不等式组的解集,若没有公共部分,说明不等式组无解。

    解法诀窍:
    同大取大 ;
    例如:
    X>-1
    X>2
    不等式组的解集是X>2

    同小取小;
    例如:
    X<-4
    X<-6
    不等式组的解集是X<-6

    大小小大中间找;
    例如,
    x<2,x>1,不等式组的解集是1<x<2

    大大小小不用找
    例如,
    x<2,x>3,不等式组无解

  • 一元一次不等式组的整数解:
    一元一次不等式组的整数解是指在不等式组中各个不等式的解集中满足整数条件的解的公共部分。
    求一元一次不等式组的整数解的一般步骤:先求出不等式组的解集,再从解集中找出所有整数解,其中要注意整数解的取值范围不要搞错。
    例如



    所以原不等式的整数解为1,2。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐