观察下列各等式:1=12;1+3=22;1+3+5=32;1+3+5+7=42…(1)若n为正整数,猜想1+3+5+7+…+2n﹣1=();(2)利用上题的结论来比较1+3+5+7+…+2009与(﹣1005)2的大小.-七年级数学

题文

观察下列各等式:1=12;1+3=22;1+3+5=32;1+3+5+7=42
(1)若n为正整数,猜想1+3+5+7+…+2n﹣1=(     );
(2)利用上题的结论来比较1+3+5+7+…+2009与(﹣1005)2的大小.
题型:解答题  难度:中档

答案

解:(1)∵1+3+5+7+…+2n﹣1是从1开始的n个连续奇数的和,
∴1+3+5+7+…+2n﹣1=n2
(2)[(1+2009)×2]2=(2010×2)2=10052=(﹣1005)2
故1+3+5+7+…+2009与(﹣1005)2相等.

据专家权威分析,试题“观察下列各等式:1=12;1+3=22;1+3+5=32;1+3+5+7=42…(1)若n为正..”主要考查你对  比较有理数的大小,有理数加法  等考点的理解。关于这些考点的“档案”如下:

比较有理数的大小有理数加法

考点名称:比较有理数的大小

  • 比较有理数大小的方法:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
    数轴法:
    1、在数轴上表示的两个数,右边的总比左边的数大。
    2、正数都大于零,负数都小于零,正数大于负数。

    绝对值法:
    1、两个正数比较大小,绝对值大的数大;
    2、两个负数比较大小,绝对值大的数反而小。

    差值法:
    设a、b为任意两有理数,两数做差,若a-b>0,则a>b ; 若a-b<0则a<b
    商值比较法:
    设a、b为任意两有理数,两数做商,若a/b>1,则a>b;若a/b<1,则a<b

考点名称:有理数加法

  • 有理数的加法:
    把两个有理数合成一个有理数的运算叫做有理数的加法。

  • 有理数的加法法则:
    (1)同号两数相加,取相同的符号,并把绝对值相加;
    (2)绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;
    (3)互为相反的两个数相加得0;
    (4)一个数同0相加,仍得这个数。

    有理数加法的运算律:
    (1)加法的交换律 :a+b=b+a;
    (2)加法的结合律:( a+b ) +c = a + (b +c)。

  • 几个有理数相加常用方法:
    ①.运用加法运算律把同号的加数相加,再把异号的加数相加;
    ②.应用运算律把可以凑整的加数相加;
    ③.运用运算律把互为相反数的加数相加。

    用加法的运算律进行简便运算的基本思路:
    ①先把互为相反数的数相加;
    ②把同分母的分数先相加;
    ③把符号相同的数先相加;
    ④把相加得整数的数先相加。

    注意事项:
    有理数的加法与小学的加法有理数的加法与小学的加法大有不同,小学的加法不涉及到符号的问题,而有理数的加法运算总是涉及到两个问题:
    一是确定结果的符号;二是求结果的绝对值。
    在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用那一条法则。
    在应用过程中,一定要牢记“先符号,后绝对值”,熟练以后就不会出错了。
    多个有理数的加法,可以从左向右计算,也可以用加法的运算定律计算,但是在下笔前一定要思考好,哪一个要用定律哪一个要从左往右计算。

    记忆要点:
    同号相加不变,异号相加变减。欲问符号怎么定,绝对值大号选。