某人沿一条直路行走,此人离出发地的距离S(千米)与行走时间t(分钟)的函数关系如图所示,请根据图像提供的信息回答下列问题:(1)此人离开出发地最远距离是__________千米;(2)-八年级数学

首页 > 考试 > 数学 > 初中数学 > 函数的图像/2019-03-20 / 加入收藏 / 阅读 [打印]

题文

某人沿一条直路行走,此人离出发地的距离S(千米)与行走时间t(分钟)的函数关系如图所示,请根据图像提供的信息回答下列问题:
(1)此人离开出发地最远距离是__________千米;
(2)此人在这次行走过程中,停留所用的时间为__________分钟;
(3)由图中线段OA可知,此人在这段时间内行走的速度是每小时__________千米;
(4)此人在120分钟内共走了__________千米。
题型:解答题  难度:中档

答案

解:(1)4;
(2)20;
(3)4.5;
(4)8。

据专家权威分析,试题“某人沿一条直路行走,此人离出发地的距离S(千米)与行走时间t(分钟..”主要考查你对  函数的图像  等考点的理解。关于这些考点的“档案”如下:

函数的图像

考点名称:函数的图像

  • 函数图象的概念:
    对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.

  • 由函数解析式画其图象的一般步骤:
    ①列表:列表给出自变量与函数的一些对应值;
    ②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
    ③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.

    利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.

    函数图象上的点的坐标与其解析式之间的关系:
    ①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;
    ②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;
    ③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。