矩形ABCD中,BC=4,AB=2,P是线段BC边上一动点,Q在PC或其延长线上,且BP=PQ,以PQ为一边作正方形PQRS,若BP=x,正方形PQRS与矩形ABCD重叠部分的面积为y,则y与x的函数的大致-数学

首页 > 考试 > 数学 > 初中数学 > 函数的图像/2019-03-20 / 加入收藏 / 阅读 [打印]

题文

矩形ABCD中,BC=4,AB=2,P是线段BC边上一动点,Q在PC或其延长线上,且BP=PQ,以PQ为一边作正方形PQRS,若BP=x,正方形PQRS与矩形ABCD重叠部分的面积为y,则y与x的函数的大致图象是( )

A. B. C. D.
题型:单选题  难度:偏易

答案

D

试题分析:

根据题意,BP=x,则PC=4-x;
当BP<PC,即x<2时,重合部分在正方形PQRS得外部,则S重叠=x2
当BP>PC,即x>2时,重合部分在正方形PQRS得内部,则S重叠=2(4-x),
分析可得D符合两段得方程;
故选D.

据专家权威分析,试题“矩形ABCD中,BC=4,AB=2,P是线段BC边上一动点,Q在PC或其延长线..”主要考查你对  函数的图像  等考点的理解。关于这些考点的“档案”如下:

函数的图像

考点名称:函数的图像

  • 函数图象的概念:
    对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.

  • 由函数解析式画其图象的一般步骤:
    ①列表:列表给出自变量与函数的一些对应值;
    ②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
    ③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.

    利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.

    函数图象上的点的坐标与其解析式之间的关系:
    ①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;
    ②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;
    ③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐