已知反比例函数y=kx经过点(-1,2),那么一次函数y=-kx+2的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限-数学
题文
已知反比例函数y=
|
答案
已知反比例函数y=
则把(-1,2)代入解析式就得到2=-k,因而k=-2, 则一次函数y=-kx+2的解析式是y=2x+2, 图象一定经过第一,二,三象限. 故不经过第四象限. 故选D. |
据专家权威分析,试题“已知反比例函数y=kx经过点(-1,2),那么一次函数y=-kx+2的图象一..”主要考查你对 一次函数的定义,反比例函数的图像 等考点的理解。关于这些考点的“档案”如下:
一次函数的定义反比例函数的图像
考点名称:一次函数的定义
- 一次函数的定义:
在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k、b为常数,k≠0),那么我们就说y是x的一次函数,其中x是自变量,y是因变量。
①正比例函数是一次函数,但一次函数不一定是正比例函数;
②一般情况下,一次函数的自变量的取值范围时全体实数;
③如果一个函数是一次函数,则含有自变量x的式子是一次的,系数k不等于0,而b可以为任意实数。 - 一次函数基本性质:
1.在正比例函数时,x与y的商一定(x≠0)。在反比例函数时,x与y的积一定。
在y=kx+b(k,b为常数,k≠0)中,当x增大m时,函数值y则增大km,反之,当x减少m时,函数值y则减少km。
2.当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0,b)。
3.当b=0时,一次函数变为正比例函数。当然正比例函数为特殊的一次函数。
4.在两个一次函数表达式中:
当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;
当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;
当两个一次函数表达式中的k不相同,b不相同时,则这两个一次函数的图像相交;
当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);
当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。
5.两个一次函数(y1=k1x+b1,y2=k2x+b2)相乘时(k≠0),得到的的新函数为二次函数,
该函数的对称轴为-(k2b1+k1b2)/(2k1k2);
当k1,k2正负相同时,二次函数开口向上;
当k1,k2正负相反时,二次函数开口向下。
二次函数与y轴交点为(0,b2b1)。
6.两个一次函数(y1=ax+b,y2=cx+d)之比,得到的新函数y3=(ax+b)/(cx+d)为反比例函数,渐近线为x=-b/a,y=c/a。 - 一次函数的判定:
①判断一个函数是否是一次函数,就是判断它是否能化成y=kx+b的形式;
②当k≠0,b=0时,这个函数即是k≠0一次函数,k≠0又是正比例函数;
③当k=0,b≠0时,这个函数不是一次函数;
④一次函数的一般形式是关于x的一次二项式,它可以转化为含x、y的二元一次方程。
考点名称:反比例函数的图像
- 反比例函数的图象:
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x≠0,函数y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。 - 反比例函数图象的画法:
(1)列表:
(2)描点:在平面直角坐标系中标出点。
(3)连线:用平滑的曲线连接点。
当双曲线在一三象限,K>0,在每个象限内,Y随X的增大而减小。
当双曲线在二四象限,K<0,在每个象限内,Y随X的增大而增大。
常见画法当两个数相等时那么曲线呈弯月型。 - k的意义及应用:
过反比例函数(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积。过反比例函数过一点,作垂线,三角形的面积为。
研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。
推论内容:一次函数y=x+b或y=-x+b若与反比例函数存在两个交点,若设2点的横坐标分别为x1,x2,那么这两个交点与原点连线和两点之间的连线所构成的三角形面积为 - 不同象限分比例函数图像:
常见画法:
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |