在学习了一次函数的性质后,小明和小强设计了一个游戏:有四张正面完全相同的卡片,背面分别写有1,2,-1,-2四个数字,将背面朝下.洗匀后,第一次随机抽查一张不放回,卡片上-数学
题文
在学习了一次函数的性质后,小明和小强设计了一个游戏:有四张正面完全相同的卡片,背面分别写有1,2,-1,-2四个数字,将背面朝下.洗匀后,第一次随机抽查一张不放回,卡片上的数字作为一次函数y=kx+b的斜率k;第二次随机再抽出一张,卡片上的数字作为一次函数y=kx+b的截距b. (1)用树状图或列表的方法求抽得数字使一次函数的图象不过第三象限的概率. (2)若抽的数字使一次函数的图象不过第三象限小明得1分;抽的数字使一次函数的图象不过第一象限小强得1分.这个游戏对双方公平吗?如不公平应如何修改得分规则,使游戏对双方公平. |
答案
(1)由题意,列表得:
∴P(图象不经过第三象限)=
(2)∵P(图象不经过第一象限)=
∴这个游戏对双方不公平, 应将得分规则修改为:图象不经过第三象限小明得1分,图象不过第一象限小强得2分. |
据专家权威分析,试题“在学习了一次函数的性质后,小明和小强设计了一个游戏:有四张正面..”主要考查你对 一次函数的定义,列举法求概率,利用概率解决问题 等考点的理解。关于这些考点的“档案”如下:
一次函数的定义列举法求概率利用概率解决问题
考点名称:一次函数的定义
- 一次函数的定义:
在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k、b为常数,k≠0),那么我们就说y是x的一次函数,其中x是自变量,y是因变量。
①正比例函数是一次函数,但一次函数不一定是正比例函数;
②一般情况下,一次函数的自变量的取值范围时全体实数;
③如果一个函数是一次函数,则含有自变量x的式子是一次的,系数k不等于0,而b可以为任意实数。 - 一次函数基本性质:
1.在正比例函数时,x与y的商一定(x≠0)。在反比例函数时,x与y的积一定。
在y=kx+b(k,b为常数,k≠0)中,当x增大m时,函数值y则增大km,反之,当x减少m时,函数值y则减少km。
2.当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0,b)。
3.当b=0时,一次函数变为正比例函数。当然正比例函数为特殊的一次函数。
4.在两个一次函数表达式中:
当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;
当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;
当两个一次函数表达式中的k不相同,b不相同时,则这两个一次函数的图像相交;
当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);
当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。
5.两个一次函数(y1=k1x+b1,y2=k2x+b2)相乘时(k≠0),得到的的新函数为二次函数,
该函数的对称轴为-(k2b1+k1b2)/(2k1k2);
当k1,k2正负相同时,二次函数开口向上;
当k1,k2正负相反时,二次函数开口向下。
二次函数与y轴交点为(0,b2b1)。
6.两个一次函数(y1=ax+b,y2=cx+d)之比,得到的新函数y3=(ax+b)/(cx+d)为反比例函数,渐近线为x=-b/a,y=c/a。 - 一次函数的判定:
①判断一个函数是否是一次函数,就是判断它是否能化成y=kx+b的形式;
②当k≠0,b=0时,这个函数即是k≠0一次函数,k≠0又是正比例函数;
③当k=0,b≠0时,这个函数不是一次函数;
④一次函数的一般形式是关于x的一次二项式,它可以转化为含x、y的二元一次方程。
考点名称:列举法求概率
- 可能条件下概率的意义:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=。
等可能条件下概率的特征:
(1)对于每一次试验中所有可能出现的结果都是有限的;
(2)每一个结果出现的可能性相等。 - 概率的计算方法:
(1)列举法(列表或画树状图),
(2)公式法;
列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果。
列表法
(1)定义:用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
(2)列表法的应用场合
当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
树状图法
(1)定义:通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
(2)运用树状图法求概率的条件
当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
考点名称:利用概率解决问题
- 应用概率可以解决以下问题:
(1)彩票中奖率的问题;
(2)抽样检测中产品合格率的问题;
(3)天气预报降水的概率;
(4)抛硬币、掷骰字的问题;
(5)圆盘分几个区域,分别涂色,转到哪个颜色的区域的概率;
(6)有刚回及无放回的摸球问题。
概率的应用情况远不止于这些,还有很多类似情况,在解决这类问题时,要充分理解题意,找到切入点,就能轻松的解决问题。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:一次函数y=-2x+3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限-数学
下一篇:一个函数,当x>0时,它的函数值随自变量x的增大而减小,这个函数可以是______(写出满足条件的一个函数即可).-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |