分别写出一个一次函数和一个二次函数使它们都满足以下的条件:当自变量x的值取-3时,函数y的值为正数,而当x的值为-1、2时,y的值均为负数.并分别说明你所写出的函数符合上述-数学

首页 > 考试 > 数学 > 初中数学 > 一次函数的定义/2019-03-20 / 加入收藏 / 阅读 [打印]

题文

分别写出一个一次函数和一个二次函数使它们都满足以下的条件:当自变量x的值取-3时,函数y的值为正数,而当x的值为-1、2时,y的值均为负数.并分别说明你所写出的函数符合上述条件.
题型:解答题  难度:中档

答案

一次函数解析式可以是y=-x-2等.
∵当x=-3时,y=1>0;
当x=-1时,y=-1<0;
当x=2时,y=-4<0.
∴y=-x-2符合条件.
二次函数解析式可以是y=x2-x-6等.
∵当x=-3时,y=6>0;
当x=-1时,y=-4<0;
当x=2时,y=-4<0.
∴y=x2-x-6符合条件.

据专家权威分析,试题“分别写出一个一次函数和一个二次函数使它们都满足以下的条件:当自..”主要考查你对  一次函数的定义,二次函数的定义  等考点的理解。关于这些考点的“档案”如下:

一次函数的定义二次函数的定义

考点名称:一次函数的定义

  • 一次函数的定义:
    在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k、b为常数,k≠0),那么我们就说y是x的一次函数,其中x是自变量,y是因变量。
    ①正比例函数是一次函数,但一次函数不一定是正比例函数;
    ②一般情况下,一次函数的自变量的取值范围时全体实数;
    ③如果一个函数是一次函数,则含有自变量x的式子是一次的,系数k不等于0,而b可以为任意实数。

  • 一次函数基本性质:
    1.在正比例函数时,x与y的商一定(x≠0)。在反比例函数时,x与y的积一定。
    在y=kx+b(k,b为常数,k≠0)中,当x增大m时,函数值y则增大km,反之,当x减少m时,函数值y则减少km。

    2.当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0,b)。

    3.当b=0时,一次函数变为正比例函数。当然正比例函数为特殊的一次函数。

    4.在两个一次函数表达式中:
    当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;
    当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;
    当两个一次函数表达式中的k不相同,b不相同时,则这两个一次函数的图像相交;
    当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);
    当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。

    5.两个一次函数(y1=k1x+b1,y2=k2x+b2)相乘时(k≠0),得到的的新函数为二次函数,
    该函数的对称轴为-(k2b1+k1b2)/(2k1k2);
    当k1,k2正负相同时,二次函数开口向上;
    当k1,k2正负相反时,二次函数开口向下。
    二次函数与y轴交点为(0,b2b1)。

    6.两个一次函数(y1=ax+b,y2=cx+d)之比,得到的新函数y3=(ax+b)/(cx+d)为反比例函数,渐近线为x=-b/a,y=c/a。

  • 一次函数的判定:
    ①判断一个函数是否是一次函数,就是判断它是否能化成y=kx+b的形式;
    ②当k≠0,b=0时,这个函数即是k≠0一次函数,k≠0又是正比例函数;
    ③当k=0,b≠0时,这个函数不是一次函数;
    ④一次函数的一般形式是关于x的一次二项式,它可以转化为含x、y的二元一次方程。

考点名称:二次函数的定义

  • 定义:
    一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
    ①所谓二次函数就是说自变量最高次数是2;
    ②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
    ③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。

  • 二次函数的解析式有三种形式:
    (1)一般式:(a,b,c是常数,a≠0);
    (2)顶点式: (a,h,k是常数,a≠0)
    (3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。

    二次函数的一般形式的结构特征:
    ①函数的关系式是整式;
    ②自变量的最高次数是2;
    ③二次项系数不等于零。

  • 二次函数的判定:
    二次函数的一般形式中等号右边是关于自变量x的二次三项式;
    当b=0,c=0时,y=ax2是特殊的二次函数;
    判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成(a≠0)的形式,那么这个函数就是二次函数,否则就不是。