某军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油的过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油油箱的余油量为Q2吨,加油时间为t分钟,-八年级数学

首页 > 考试 > 数学 > 初中数学 > 一次函数的定义/2019-03-20 / 加入收藏 / 阅读 [打印]

题文

某军加油飞机接到命令,立即给另一架正在飞行

的运输飞机进行空中加油.在加油的过程中,
设运输飞机的油箱余油量为Q1吨,加油飞机的
加油油箱的余油量为Q2吨,加油时间为t分钟,
Q1Q2t之间的函数关系如图.回答问题:
小题1:(1) 加油飞机的加油油箱中装载了多少吨油?
将这些油全部加给运输飞机需要多少分钟?
小题2:(2) 求加油过程中,运输飞机的余油量Q1(吨)
与时间t(分钟)的函数关系式;
小题3:(3) 运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?
请通过计算说明理由.

题型:解答题  难度:中档

答案


小题1:(1) 30吨油,需10分钟
小题2:(2) 设Q1ktb,由于过(0,30)和(10,65)点,可求得:Q1=2.9t+36(0≤t≤10)
小题3:(3) 根据图象可知运输飞机的耗油量为每分钟0.1吨,因此10小时耗油量为
10×60×0.1=60(吨)<65(吨),所以油料够用

(1)由图象知,加油飞机的加油油箱中装载了30吨油;
全部加给运输飞机需10分钟;
(2)设Q1=kt+b,把(0,36)和(10,65)代入,得
b="36," 10k+b=65,
解得 k="2.9," b=36,
∴Q1=2.9t+36(0≤t≤10);
(3)∵加油过程中加油飞机和运输飞机的速度和耗油量是一样的,题目说“运输飞机加完油后,以原速继续飞行”,
∴后来的运输飞机的速度和加油的时候的加油飞机速度和耗油量也是相同的.
∵在加油过程中,余油量由36吨到65吨一共增加了29吨,
∴运输飞机在加油的过程中也有耗油,而在加油过程10分钟内运输飞机一共耗掉了1吨油(输了30吨油,加完油后余油量为29吨),
∴每一分钟的耗油量为:1÷10=0.1吨每分钟.
即根据图象可知运输飞机的耗油量为每分钟0.1吨,
∴10小时耗油量为:10×60×0.1=60,
∵60<65,
∴油料够用.

据专家权威分析,试题“某军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中..”主要考查你对  一次函数的定义,正比例函数的定义,正比例函数的图像  等考点的理解。关于这些考点的“档案”如下:

一次函数的定义正比例函数的定义正比例函数的图像

考点名称:一次函数的定义

  • 一次函数的定义:
    在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k、b为常数,k≠0),那么我们就说y是x的一次函数,其中x是自变量,y是因变量。
    ①正比例函数是一次函数,但一次函数不一定是正比例函数;
    ②一般情况下,一次函数的自变量的取值范围时全体实数;
    ③如果一个函数是一次函数,则含有自变量x的式子是一次的,系数k不等于0,而b可以为任意实数。

  • 一次函数基本性质:
    1.在正比例函数时,x与y的商一定(x≠0)。在反比例函数时,x与y的积一定。
    在y=kx+b(k,b为常数,k≠0)中,当x增大m时,函数值y则增大km,反之,当x减少m时,函数值y则减少km。

    2.当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0,b)。

    3.当b=0时,一次函数变为正比例函数。当然正比例函数为特殊的一次函数。

    4.在两个一次函数表达式中:
    当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;
    当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;
    当两个一次函数表达式中的k不相同,b不相同时,则这两个一次函数的图像相交;
    当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);
    当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。

    5.两个一次函数(y1=k1x+b1,y2=k2x+b2)相乘时(k≠0),得到的的新函数为二次函数,
    该函数的对称轴为-(k2b1+k1b2)/(2k1k2);
    当k1,k2正负相同时,二次函数开口向上;
    当k1,k2正负相反时,二次函数开口向下。
    二次函数与y轴交点为(0,b2b1)。

    6.两个一次函数(y1=ax+b,y2=cx+d)之比,得到的新函数y3=(ax+b)/(cx+d)为反比例函数,渐近线为x=-b/a,y=c/a。

  • 一次函数的判定:
    ①判断一个函数是否是一次函数,就是判断它是否能化成y=kx+b的形式;
    ②当k≠0,b=0时,这个函数即是k≠0一次函数,k≠0又是正比例函数;
    ③当k=0,b≠0时,这个函数不是一次函数;
    ④一次函数的一般形式是关于x的一次二项式,它可以转化为含x、y的二元一次方程。

考点名称:正比例函数的定义

  • 正比例函数定义:
    一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
    正比例函数属于一次函数,但一次函数却不一定是正比例函数。
    正比例函数是一次函数的特殊形式,即一次函数y=kx+b中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。
    正比例函数的关系式表示为:y=kx(k为比例系数)
    当k>0时(一三象限),k越大,图像与y轴的距离越近。函数值y随着自变量x的增大而增大。
    当k<0时(二四象限),k越小,图像与y轴的距离越近。自变量x的值增大时,y的值则逐渐减小。

  • 正比例函数性质:
    定义域
    R(实数集)

    值域
    R(实数集)

    奇偶性
    奇函数

    单调性
    当k>0时,图像位于第一、三象限,从左往右,y随x的增大而增大(单调递增),为增函数;
    当k<0时,图像位于第二、四象限,从左往右,y随x的增大而减小(单调递减),为减函数。

    周期性
    不是周期函数。

    对称性
    对称点:关于原点成中心对称
    对称轴:自身所在直线;自身所在直线的垂直平分线

考点名称:正比例函数的图像

  • 图象:一条经过原点的直线。
    性质:
    (1)当k>0时,y随x的增大而增大;
    (2)当k<0时,y随x的增大而减小。
    1、在x允许的范围内取一个值,根据解析式求出y的值;
    2、根据第一步求的x、y的值描出点;
    3、作出第二步描出的点和原点的直线(因为两点确定一直线)。

  • <?xml:namespace prefix = "v" ns = "urn:schemas-microsoft-com:vml" />正比例函数的图像:
     <?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐