甲乙两地相距400km,一辆轿车从甲地出发,以80km/h的速度匀速驶往乙地.0.5h后,一辆货车从乙地出发匀速驶往甲地.货车出发2.5h后与轿车在途中相遇.此后,两车继续行驶,并各-九年级数学

首页 > 考试 > 数学 > 初中数学 > 一次函数的定义/2019-03-20 / 加入收藏 / 阅读 [打印]

题文

甲乙两地相距400km,一辆轿车从甲地出发,以80km/h的速度匀速驶往乙地.0.5h后,一辆货车从乙地出发匀速驶往甲地.货车出发2.5h后与轿车在途中相遇.此后,两车继续行驶,并各自到达目的地.设轿车行驶的时间为x(h),两车距乙地的距离为y(km).

(1)两车距乙地的距离与x之间的函数关系,在同一坐标系中画出的图象是(    )
(2)求货车距乙地的距离y1与x之间的函数关系式.
(3)在甲乙两地间,距乙地300km处有一个加油站,两车在行驶过程中都曾在该加油站加油(加油时间忽略不计).求两车加油的间隔时间是多少?

题型:解答题  难度:偏易

答案

(1)C;(2)y1=64x-32;(3)h


试题分析:(1)根据“一辆轿车从甲地出发,0.5h后一辆货车从乙地出发匀速驶往甲地.货车出发2.5h后与轿车在途中相遇”即可作出判断;
(2)先求出轿车的行驶时间,再根据待定系数法求得轿车离乙地距离的函数关系式,从而求得D点坐标,设y1=k1x+b1,代入A(0.5,0)、D(3,160)即可根据待定系数法求得结果;
(3)将y=300分别代入求得的两个函数关系式求得对应的x的值,再作差即可求得结果.
(1)两车距乙地的距离与x之间的函数关系,在同一坐标系中画出的图象是C;
(2)轿车行驶时间为400÷80=5(h),设轿车离乙地距离为y2,y2=k2x+b2
代入(0,400),(5,0)得,k2 =-80,b2=400,
所以y2=-80x+400.代入x=3得,y=160.即D点坐标为(3,160)
设y1=k1x+b1.代入A(0.5,0)、D(3,160)得,k1 =64,b1=-32,
所以y1=64x-32;
(3)将y1=300代入y1=64x-32得x1
将y2=300代入y2=-80x+400得x2
所以x1-x2
答:两车加油的间隔时间是h.
点评:一次函数的应用是初中数学的重点,是中考常见题,一般难度较大,要熟练掌握.

据专家权威分析,试题“甲乙两地相距400km,一辆轿车从甲地出发,以80km/h的速度匀速驶往..”主要考查你对  一次函数的定义,正比例函数的定义,正比例函数的图像  等考点的理解。关于这些考点的“档案”如下:

一次函数的定义正比例函数的定义正比例函数的图像

考点名称:一次函数的定义

  • 一次函数的定义:
    在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k、b为常数,k≠0),那么我们就说y是x的一次函数,其中x是自变量,y是因变量。
    ①正比例函数是一次函数,但一次函数不一定是正比例函数;
    ②一般情况下,一次函数的自变量的取值范围时全体实数;
    ③如果一个函数是一次函数,则含有自变量x的式子是一次的,系数k不等于0,而b可以为任意实数。

  • 一次函数基本性质:
    1.在正比例函数时,x与y的商一定(x≠0)。在反比例函数时,x与y的积一定。
    在y=kx+b(k,b为常数,k≠0)中,当x增大m时,函数值y则增大km,反之,当x减少m时,函数值y则减少km。

    2.当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0,b)。

    3.当b=0时,一次函数变为正比例函数。当然正比例函数为特殊的一次函数。

    4.在两个一次函数表达式中:
    当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;
    当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;
    当两个一次函数表达式中的k不相同,b不相同时,则这两个一次函数的图像相交;
    当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);
    当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。

    5.两个一次函数(y1=k1x+b1,y2=k2x+b2)相乘时(k≠0),得到的的新函数为二次函数,
    该函数的对称轴为-(k2b1+k1b2)/(2k1k2);
    当k1,k2正负相同时,二次函数开口向上;
    当k1,k2正负相反时,二次函数开口向下。
    二次函数与y轴交点为(0,b2b1)。

    6.两个一次函数(y1=ax+b,y2=cx+d)之比,得到的新函数y3=(ax+b)/(cx+d)为反比例函数,渐近线为x=-b/a,y=c/a。

  • 一次函数的判定:
    ①判断一个函数是否是一次函数,就是判断它是否能化成y=kx+b的形式;
    ②当k≠0,b=0时,这个函数即是k≠0一次函数,k≠0又是正比例函数;
    ③当k=0,b≠0时,这个函数不是一次函数;
    ④一次函数的一般形式是关于x的一次二项式,它可以转化为含x、y的二元一次方程。

考点名称:正比例函数的定义

  • 正比例函数定义:
    一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
    正比例函数属于一次函数,但一次函数却不一定是正比例函数。
    正比例函数是一次函数的特殊形式,即一次函数y=kx+b中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。
    正比例函数的关系式表示为:y=kx(k为比例系数)
    当k>0时(一三象限),k越大,图像与y轴的距离越近。函数值y随着自变量x的增大而增大。
    当k<0时(二四象限),k越小,图像与y轴的距离越近。自变量x的值增大时,y的值则逐渐减小。

  • 正比例函数性质:
    定义域
    R(实数集)

    值域
    R(实数集)

    奇偶性
    奇函数

    单调性
    当k>0时,图像位于第一、三象限,从左往右,y随x的增大而增大(单调递增),为增函数;
    当k<0时,图像位于第二、四象限,从左往右,y随x的增大而减小(单调递减),为减函数。

    周期性
    不是周期函数。

    对称性
    对称点:关于原点成中心对称
    对称轴:自身所在直线;自身所在直线的垂直平分线

考点名称:正比例函数的图像

  • 图象:一条经过原点的直线。
    性质:
    (1)当k>0时,y随x的增大而增大;
    (2)当k<0时,y随x的增大而减小。
    1、在x允许的范围内取一个值,根据解析式求出y的值;
    2、根据第一步求的x、y的值描出点;
    3、作出第二步描出的点和原点的直线(因为两点确定一直线)。

  • <?xml:namespace prefix = "v" ns = "urn:schemas-microsoft-com:vml" />正比例函数的图像:
     <?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />