如图,已知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为______.-数学

首页 > 考试 > 数学 > 初中数学 > 一次函数的图像/2019-03-24 / 加入收藏 / 阅读 [打印]

题文

如图,已知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为______.

题型:填空题  难度:偏易

答案



∵直线的解析式是y=x+b,
∴OB=OC=b,则∠BCA=45°;
又∵∠α=75°=∠BCA+∠BAC=45°+∠BAC(外角定理),
∴∠BAC=30°;
而点A的坐标是(5,0),
∴OA=5,
在Rt△BAO中,∠BAC=30°,OA=5,
∴tan∠BAO=
OB
OA
=

3
3

∴BO=
5

3
3
,即b=
5

3
3

故答案是:
5

3
3

据专家权威分析,试题“如图,已知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接A..”主要考查你对  一次函数的图像,三角形的外角性质,直角三角形的性质及判定,解直角三角形  等考点的理解。关于这些考点的“档案”如下:

一次函数的图像三角形的外角性质直角三角形的性质及判定解直角三角形

考点名称:一次函数的图像

  • 函数不是数,它是指某一变化过程中两个变量之间的关系
    一次函数的图象:一条直线,过(0,b),(,0)两点。

  • 性质:
    (1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。
    (2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。

    k,b决定函数图像的位置:
    y=kx时,y与x成正比例:
    当k>0时,直线必通过第一、三象限,y随x的增大而增大;
    当k<0时,直线必通过第二、四象限,y随x的增大而减小。
    y=kx+b时:
    当 k>0,b>0, 这时此函数的图象经过第一、二、三象限;
    当 k>0,b<0,这时此函数的图象经过第一、三、四象限;
    当 k<0,b>0,这时此函数的图象经过第一、二、四象限;
    当 k<0,b<0,这时此函数的图象经过第二、三、四象限。
    当b>0时,直线必通过第一、二象限;
    当b<0时,直线必通过第三、四象限。
    特别地,当b=0时,直线经过原点O(0,0)。
    这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。
    当k<0时,直线只通过第二、四象限,不会通过第一、三象限。

  • 特殊位置关系:
    当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;
    当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)一次函数的

  • 画法
    (1)列表:表中给出一些自变量的值及其对应的函数值。
    (2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
    一般地,y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。
    正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点画出即可。
    (3)连线: 按照横坐标由小到大的顺序把描出的各点用直线连接起来。

考点名称:三角形的外角性质

  • 三角形的外角
    三角形的一条边的延长线和另一条相邻的边组成的角,叫做三角形的外角。

    ∠1是三角形的外角。

  • 三角形的外角特征:
    ①顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;
    ②一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;
    ③另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC边的延长线。
     
    性质:
    ①. 三角形的外角与它相邻的内角互补。
    ②. 三角形的一个外角等于和它不相邻的两个内角的和。
    ③. 三角形的一个外角大于任何一个和它不相邻的内角。
    ④. 三角形的外角和等于360°。
    设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。

    定理:三角形的一个外角等于不相邻的两个内角和。
    定理:三角形的三个内角和为180度。

考点名称:直角三角形的性质及判定

  • 直角三角形定义:
    有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。

  • 直角三角形性质:
    直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
    性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
    性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
    性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
    性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
    性质5:

    如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
    (1)(AD)2=BD·DC。
    (2)(AB)2=BD·BC。
    (3)(AC)2=CD·BC。
    性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
    在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
    性质7:如图,1/AB2+1/AC2=1/AD2
    性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
    性质9:直角三角形直角上的角平分线与斜边的交点D 则    BD:DC=AB:AC

  • 直角三角形的判定方法:
    判定1:定义,有一个角为90°的三角形是直角三角形。
    判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
    判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
    判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
    判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
    判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
    判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)

考点名称:解直角三角形

  • 概念:
    在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素,求出所有未知元素的过程叫做解直角三角形。

    解直角三角形的边角关系:
    在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,
    (1)三边之间的关系:(勾股定理);
    (2)锐角之间的关系:∠A+∠B=90°;
    (3)边角之间的关系:

  • 解直角三角形的函数值:

    锐角三角函数:
    sinA=a/c,cosA=b/c,tanA=a/b,cotA=b/a
    (1)互余角的三角函数值之间的关系:
    若∠ A+∠ B=90°,那么sinA=cosB或sinB=cosA
    (2)同角的三角函数值之间的关系:
    ①sin2A+cos2A=1
    ②tanA=sinA/cosA
    ③tanA=1/tanB
    ④a/sinA=b/sinB=c/sinC
    (3)锐角三角函数随角度的变化规律:
    锐角∠A的tan值和sin值随着角度的增大而增大,cos值随着角度的增大而减小。

  • 解直角三角形的应用:
    一般步骤是:
    (1)将实际问题抽象为数学问题(画图,转化为直角三角形的问题);
    (2)根据题目的条件,适当选择锐角三角函数等去解三角形;
    (3)得到数学问题的答案;
    (4)还原为实际问题的答案。

  • 解直角三角形的函数值列举:
    sin1=0.01745240643728351 sin2=0.03489949670250097 sin3=0.05233595624294383
    sin4=0.0697564737441253 sin5=0.08715574274765816 sin6=0.10452846326765346
    sin7=0.12186934340514747 sin8=0.13917310096006544 sin9=0.15643446504023087
    sin10=0.17364817766693033 sin11=0.1908089953765448 sin12=0.20791169081775931
    sin13=0.22495105434386497 sin14=0.24192189559966773 sin15=0.25881904510252074
    sin16=0.27563735581699916 sin17=0.2923717047227367 sin18=0.3090169943749474
    sin19=0.3255681544571567 sin20=0.3420201433256687 sin21=0.35836794954530027
    sin22=0.374606593415912 sin23=0.3907311284892737 sin24=0.40673664307580015
    sin25=0.42261826174069944 sin26=0.4383711467890774 sin27=0.45399049973954675
    sin28=0.4694715627858908 sin29=0.48480962024633706 sin30=0.49999999999999994
    sin31=0.5150380749100542 sin32=0.5299192642332049 sin33=0.544639035015027
    sin34=0.5591929034707468 sin35=0.573576436351046 sin36=0.5877852522924731
    sin37=0.6018150231520483 sin38=0.6156614753256583 sin39=0.6293203910498375
    sin40=0.6427876096865392 sin41=0.6560590289905073 sin42=0.6691306063588582
    sin43=0.6819983600624985 sin44=0.6946583704589972 sin45=0.7071067811865475
    sin46=0.7193398003386511 sin47=0.7313537016191705 sin48=0.7431448254773941
    sin49=0.7547095802227719 sin50=0.766044443118978 sin51=0.7771459614569708
    sin52=0.7880107536067219 sin53=0.7986355100472928 sin54=0.8090169943749474
    sin55=0.8191520442889918 sin56=0.8290375725550417 sin57=0.8386705679454239
    sin58=0.848048096156426 sin59=0.8571673007021122 sin60=0.8660254037844386
    sin61=0.8746197071393957 sin62=0.8829475928589269 sin63=0.8910065241883678
    sin64=0.898794046299167 sin65=0.9063077870366499 sin66=0.9135454576426009
    sin67=0.9205048534524404 sin68=0.9271838545667873 sin69=0.9335804264972017
    sin70=0.9396926207859083 sin71=0.9455185755993167 sin72=0.9510565162951535
    sin73=0.9563047559630354 sin74=0.9612616959383189 sin75=0.9659258262890683
    sin76=0.9702957262759965 sin77=0.9743700647852352 sin78=0.9781476007338057
    sin79=0.981627183447664 sin80=0.984807753012208 sin81=0.9876883405951378
    sin82=0.9902680687415704 sin83=0.992546151641322 sin84=0.9945218953682733
    sin85=0.9961946980917455 sin86=0.9975640502598242 sin87=0.9986295347545738
    sin88=0.9993908270190958 sin89=0.9998476951563913
    sin90=1

    cos1=0.9998476951563913 cos2=0.9993908270190958 cos3=0.9986295347545738
    cos4=0.9975640502598242 cos5=0.9961946980917455 cos6=0.9945218953682733
    cos7=0.992546151641322 cos8=0.9902680687415704 cos9=0.9876883405951378
    cos10=0.984807753012208 cos11=0.981627183447664 cos12=0.9781476007338057
    cos13=0.9743700647852352 cos14=0.9702957262759965 cos15=0.9659258262890683
    cos16=0.9612616959383189 cos17=0.9563047559630355 cos18=0.9510565162951535
    cos19=0.9455185755993168 cos20=0.9396926207859084 cos21=0.9335804264972017
    cos22=0.9271838545667874 cos23=0.9205048534524404 cos24=0.9135454576426009
    cos25=0.9063077870366499 cos26=0.898794046299167 cos27=0.8910065241883679
    cos28=0.882947592858927 cos29=0.8746197071393957 cos30=0.8660254037844387
    cos31=0.8571673007021123 cos32=0.848048096156426 cos33=0.838670567945424
    cos34=0.8290375725550417 cos35=0.8191520442889918 cos36=0.8090169943749474
    cos37=0.7986355100472928 cos38=0.7880107536067219 cos39=0.7771459614569709
    cos40=0.766044443118978 cos41=0.754709580222772 cos42=0.7431448254773942
    cos43=0.7313537016191705 cos44=0.7193398003386512 cos45=0.7071067811865476
    cos46=0.6946583704589974 cos47=0.6819983600624985 cos48=0.6691306063588582
    cos49=0.6560590289905074 cos50=0.6427876096865394 cos51=0.6293203910498375
    cos52=0.6156614753256583 cos53=0.6018150231520484 cos54=0.5877852522924731
    cos55=0.5735764363510462 cos56=0.5591929034707468 cos57=0.5446390350150272
    cos58=0.5299192642332049 cos59=0.5150380749100544 cos60=0.5000000000000001
    cos61=0.4848096202463371 cos62=0.46947156278589086 cos63=0.4539904997395468
    cos64=0.43837114678907746 cos65=0.42261826174069944 cos66=0.4067366430758004
    cos67=0.3907311284892737 cos68=0.3746065934159122 cos69=0.35836794954530015
    cos70=0.3420201433256688 cos71=0.32556815445715675 cos72=0.30901699437494745
    cos73=0.29237170472273677 cos74=0.27563735581699916 cos75=0.25881904510252074
    cos76=0.24192189559966767 cos77=0.22495105434386514 cos78=0.20791169081775923
    cos79=0.19080899537654491 cos80=0.17364817766693041 cos81=0.15643446504023092
    cos82=0.13917310096006546 cos83=0.12186934340514749 cos84=0.10452846326765346
    cos85=0.08715574274765836 cos86=0.06975647374412523 cos87=0.052335956242943966
    cos88=0.03489949670250108 cos89=0.0174524064372836
    cos90=0

    tan1=0.017455064928217585 tan2=0.03492076949174773 tan3=0.052407779283041196
    tan4=0.06992681194351041 tan5=0.08748866352592401 tan6=0.10510423526567646
    tan7=0.1227845609029046 tan8=0.14054083470239145 tan9=0.15838444032453627
    tan10=0.17632698070846497 tan11=0.19438030913771848 tan12=0.2125565616700221
    tan13=0.2308681911255631 tan14=0.24932800284318068 tan15=0.2679491924311227
    tan16=0.2867453857588079 tan17=0.30573068145866033 tan18=0.3249196962329063
    tan19=0.34432761328966527 tan20=0.36397023426620234 tan21=0.3838640350354158
    tan22=0.4040262258351568 tan23=0.4244748162096047 tan24=0.4452286853085361
    tan25=0.4663076581549986 tan26=0.4877325885658614 tan27=0.5095254494944288
    tan28=0.5317094316614788 tan29=0.554309051452769 tan30=0.5773502691896257
    tan31=0.6008606190275604 tan32=0.6248693519093275 tan33=0.6494075931975104
    tan34=0.6745085168424265 tan35=0.7002075382097097 tan36=0.7265425280053609
    tan37=0.7535540501027942 tan38=0.7812856265067174 tan39=0.8097840331950072
    tan40=0.8390996311772799 tan41=0.8692867378162267 tan42=0.9004040442978399
    tan43=0.9325150861376618 tan44=0.9656887748070739 tan45=0.9999999999999999
    tan46=1.0355303137905693 tan47=1.0723687100246826 tan48=1.1106125148291927
    tan49=1.1503684072210092 tan50=1.19175359259421 tan51=1.234897156535051
    tan52=1.2799416321930785 tan53=1.3270448216204098 tan54=1.3763819204711733
    tan55=1.4281480067421144 tan56=1.4825609685127403 tan57=1.5398649638145827
    tan58=1.6003345290410506 tan59=1.6642794823505173 tan60=1.7320508075688767
    tan61=1.8040477552714235 tan62=1.8807264653463318 tan63=1.9626105055051503
    tan64=2.050303841579296 tan65=2.1445069205095586 tan66=2.246036773904215
    tan67=2.355852365823753 tan68=2.4750868534162946 tan69=2.6050890646938023
    tan70=2.7474774194546216 tan71=2.904210877675822 tan72=3.0776835371752526
    tan73=3.2708526184841404 tan74=3.4874144438409087 tan75=3.7320508075688776
    tan76=4.0107809335358455 tan77=4.331475874284153 tan78=4.704630109478456
    tan79=5.144554015970307 tan80=5.671281819617707 tan81=6.313751514675041
    tan82=7.115369722384207 tan83=8.144346427974593 tan84=9.514364454222587
    tan85=11.43005230276132 tan86=14.300666256711942 tan87=19.08113668772816
    tan88=28.636253282915515 tan89=57.289961630759144
    tan90=(无限)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐