(1)根据两点确定一条直线,画出函数y1=5x+4的图象;(2)再画出函数y2=2x+10的图象;(3)写出它们交点的坐标;(4)当y1<y2时,写出x的取值范围.-数学
题文
(1)根据两点确定一条直线,画出函数y1=5x+4的图象; (2)再画出函数y2=2x+10的图象; (3)写出它们交点的坐标; (4)当y1<y2时,写出x的取值范围. |
题文
(1)根据两点确定一条直线,画出函数y1=5x+4的图象; (2)再画出函数y2=2x+10的图象; (3)写出它们交点的坐标; (4)当y1<y2时,写出x的取值范围. |
题型:解答题 难度:中档
答案
(1)(2)图象如图: (3)交点坐标为:(2,14); (4)当y1<y2时,x<2 |
据专家权威分析,试题“(1)根据两点确定一条直线,画出函数y1=5x+4的图象;(2)再画出函数..”主要考查你对 一次函数的图像,一次函数与一元一次不等式(一元一次方程),相交线 等考点的理解。关于这些考点的“档案”如下:
一次函数的图像一次函数与一元一次不等式(一元一次方程)相交线
考点名称:一次函数的图像
性质:
(1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。
k,b决定函数图像的位置:
y=kx时,y与x成正比例:
当k>0时,直线必通过第一、三象限,y随x的增大而增大;
当k<0时,直线必通过第二、四象限,y随x的增大而减小。
y=kx+b时:
当 k>0,b>0, 这时此函数的图象经过第一、二、三象限;
当 k>0,b<0,这时此函数的图象经过第一、三、四象限;
当 k<0,b>0,这时此函数的图象经过第一、二、四象限;
当 k<0,b<0,这时此函数的图象经过第二、三、四象限。
当b>0时,直线必通过第一、二象限;
当b<0时,直线必通过第三、四象限。
特别地,当b=0时,直线经过原点O(0,0)。
这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。
当k<0时,直线只通过第二、四象限,不会通过第一、三象限。
特殊位置关系:
当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;
当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)一次函数的
考点名称:一次函数与一元一次不等式(一元一次方程)
一次函数和方程关系:
一次函数 | 一元一次方程 | |
形式 | y=kx+b | ax+b=0 |
内容 | 表示的是一对(x,y)之间的关系, 它有无数对解 |
表示的是未知数x的值, 最多只有1个值 |
相互关系 | 一次函数与x轴交点的横坐标就是相应的一元一次方程的根 例如: y=4x+8与x轴的交点是(-2,0), 则一元一次方程4x+8=0的根是x=-2。 |
考点名称:相交线
相交线性质:
∠1和∠2有一条公共边OC,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角。
∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角。
∠1与∠2互补,∠3与∠2互补,由“同角的补角相等”,可以得出∠1=∠3.类似地,∠2=∠4.这样,
我们得到了对顶角的性质:对顶角相等。
垂线:
垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:
过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短.
简单说成:垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |