k=a+bc=b+ca=c+ab,且a、b、c为三角形三边,则y=k(x-1)不经过______象限.-数学

首页 > 考试 > 数学 > 初中数学 > 一次函数的图像/2019-03-24 / 加入收藏 / 阅读 [打印]

题文

k=
a+b
c
=
b+c
a
=
c+a
b
,且a、b、c为三角形三边,则y=k(x-1)不经过______象限.
题型:填空题  难度:中档

答案

根据比例的等比性质,得k=
2a+2b+2c
a+b+c
=2,
则直线的解析式是y=2x-2,
∵k>0,b<0,
∴所以图象一定经过一、三、四象限,不经过第二象限;
故答案是:第二.

据专家权威分析,试题“k=a+bc=b+ca=c+ab,且a、b、c为三角形三边,则y=k(x-1)不经过___..”主要考查你对  一次函数的图像,三角形的三边关系,比例的性质  等考点的理解。关于这些考点的“档案”如下:

一次函数的图像三角形的三边关系比例的性质

考点名称:一次函数的图像

  • 函数不是数,它是指某一变化过程中两个变量之间的关系
    一次函数的图象:一条直线,过(0,b),(,0)两点。

  • 性质:
    (1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。
    (2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。

    k,b决定函数图像的位置:
    y=kx时,y与x成正比例:
    当k>0时,直线必通过第一、三象限,y随x的增大而增大;
    当k<0时,直线必通过第二、四象限,y随x的增大而减小。
    y=kx+b时:
    当 k>0,b>0, 这时此函数的图象经过第一、二、三象限;
    当 k>0,b<0,这时此函数的图象经过第一、三、四象限;
    当 k<0,b>0,这时此函数的图象经过第一、二、四象限;
    当 k<0,b<0,这时此函数的图象经过第二、三、四象限。
    当b>0时,直线必通过第一、二象限;
    当b<0时,直线必通过第三、四象限。
    特别地,当b=0时,直线经过原点O(0,0)。
    这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。
    当k<0时,直线只通过第二、四象限,不会通过第一、三象限。

  • 特殊位置关系:
    当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;
    当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)一次函数的

  • 画法
    (1)列表:表中给出一些自变量的值及其对应的函数值。
    (2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
    一般地,y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。
    正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点画出即可。
    (3)连线: 按照横坐标由小到大的顺序把描出的各点用直线连接起来。

考点名称:三角形的三边关系

  • 三角形的三边关系:
    在三角形中,任意两边和大于第三边,任意两边差小于第三边。
    设三角形三边为a,b,c

    a+b>c
    a+c>b
    b+c>a
    a-b<c
    a-c<b
    b-c<a
    在直角三角形中,设a、b为直角边,c为斜边。
    则两直角边的平方和等于斜边平方。
    在等边三角形中,a=b=c
    在等腰三角形中, a,b为两腰,则a=b
    在三角形ABC的内角A、B、C所对边分别为a、b、c的情况下,c2=a2+b2-2abcosc

  • 三角形的三边关系定理及推论:
    (1)三角形三边关系定理:三角形的两边之和大于第三边。
    推论:三角形的两边之差小于第三边。
    (2)三角形三边关系定理及推论的作用:
    ①判断三条已知线段能否组成三角形;
    ②当已知两边时,可确定第三边的范围;
    ③证明线段不等关系。

考点名称:比例的性质

  • 比例:
    在数学中,比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构。两种相关联的量,一种量变化,另一种量也随着变化。要想判断两个比式子能不能组成比例,要看它们的比例是不是相等。
    比例性质:
    比例的基本性质:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
    在比例里,两个外项的积等于两个内项的积。a:b=c:d\leftrightarrow ad=bc,则有
    证明:




    2.分比性质:
    在一个比例等式中,第一个比例的前后项之差与第一个比例的后项的比,等于第二个比例的前后项之差与第二个比例的后项的比。
    例:已知a,b,c,d∈C,且有b≠0,d≠0,如果,则有
    证明:




    3.合分比性质:
    在一个比例等式中,第一个比例的前后项之和与第一个比例的前后项之差的比,等于第二个比例的前后项之和与第二个比例的前后项之差的比。
    例:已知a,b,c,d∈C,且有b≠0,d≠0,如果,则有
    证明:

    ,则




    4.等比性质:
    在一个比例等式中,两前项之和与两后项之和的比例与原比例相等。
    例:已知a,b,c,d∈C,且有b≠0,d≠0,如果,则有
    证明:

    ,则

  • 重要定理:


    比例尺:
    是表示图上距离比实地距离缩小的程度,因此也叫缩尺。
    用公式表示为:比例尺=图上距离/实地距离。
    1.数字式,用数字的比例式或分数式表示比例尺的大小。
    例如地图上1厘米代表实地距离500千米,可写成:1∶50,000,000或写成:1/50,000,000。
    2.线段式,在地图上画一条线段,并注明地图上1厘米所代表的实际距离。
    3.文字式,在地图上用文字直接写出地图上1厘米代表实地距离多少千米,
    如:图上1厘米相当于地面距离500千米,或五千万分之一。

    比例线段:
    1.两条线段的长度比叫做这两条线段的比。
    2.在同一单位下,四条线段长度为a、b、c、d,其关系为a∶b=c∶d,那么,这四条线段叫做成比例线段,简称比例线段。
    3.一般的,如果三个数a,b,c满足比例式a∶b=b∶c,则b就叫做a,c的比例中项。

  • 比例的美术术语:
    比例通常指物体之间形的大小、宽窄、高低的关系;另外比例也会在构图中用到,例如你在画一幅素描静物就要注意所有静物占用画面的大小关系。
    在画素描的过程中要想把形画准就要注意比例了。

    把握比例的几个技巧:
    1.横着比:当你要画某一个物体的位置时就以此做一条贯穿整个画面的横线,看到所有在这条线上的物体。
    2.竖着比:做一条贯穿画面的垂线,注意观察所有在这条线上的物体。
    3.多看物体、少看画面:为的是形成观察的意识,抛弃大脑中的原始概念。看物体5秒,看画面2秒,眼睛要在画面和物体之间反复的观察比较。
    4.总的说就是放长线、看整体、多比较。把这些想象成经线纬线一样会比较简单;初学者要多画辅助线,等功底深厚了你会发现你画面中的辅助线会越来越少,而你心里假象的辅助线会越来越多。

    在构图中要注意的比例关系技巧:一般被画物占画面百分之八十左右,看上去饱满。
    人物相关比例:
    1.三庭五眼:发际线-鼻底-下巴为三庭,这三段之间每段的距离大约相等;耳根-外眼角-内眼角-内眼角-外眼角-耳根为五眼,它们之间距离大约相等。
    2.站七坐五蹲三半:一个站着的成年人身高大约等于他七个头长(站七),当他座上时就等于五个头长(坐五),蹲着时刚好是三个半头长(三头)。
    3.小孩的头部比例较大,站着时一般为三到四个头高。
    4.张开双臂,两个中指之间的长度大约等于这个人的身高。
    5.手臂的长度为两个头长(腋窝-胳膊肘-手腕各位为一个头长)。
    6.手掌为三分之二头长。
    7.当举起胳膊时胳膊肘刚好到头顶。
    8.肩宽为两个头宽。
    9.脚掌为一个头长。
    10.男人肩比胯宽,而女人跨比肩宽。
    还有很多,可以在生活中多总结,多观察。这些都是标准人体比例,可以帮助初学者入门;
    也是艺术家创作英雄楷模人物绘画雕塑等艺术作品时的指导,例如米开朗基罗的大卫是七个半头高。在现实生活中有形形色色的人,在进行人物素描时就应当个别观察,抓住特征。