如图,已知A(-4,0),B(-1,4),将线段AB绕点O,顺时针旋转90°,得到线段A′B′.(1)求直线BB′的解析式;(2)抛物线y1=ax2-19cx+16c经过A′,B′两点,求抛物线的解析式并画出它的-数学
题文
如图,已知A(-4,0),B(-1,4),将线段AB绕点O,顺时针旋转90°,得到线段A′B′. (1)求直线BB′的解析式; (2)抛物线y1=ax2-19cx+16c经过A′,B′两点,求抛物线的解析式并画出它的图象; (3)在(2)的条件下,若直线A′B′的函数解析式为y2=mx+n,观察图象,当y1≥y2时,写出x的取值范围. |
答案
(1)画出正确的线段A′B′.(1分) 由画图可知点B′的坐标为(4,1), 设直线BB′的解析式为y=kx+b, 由题意可得
即直线BB′的解析式为y=-
(2)由画图可知点A′的坐标为(0,4), 由题意可得
即抛物线的解析式为y1=x2-
画图正确;(1分) (3)由图象可知,当x≤0或x≥4时,y1≥y2.(2分) |
据专家权威分析,试题“如图,已知A(-4,0),B(-1,4),将线段AB绕点O,顺时针旋转90°,..”主要考查你对 一次函数的图像 等考点的理解。关于这些考点的“档案”如下:
一次函数的图像
考点名称:一次函数的图像
- 函数不是数,它是指某一变化过程中两个变量之间的关系
一次函数的图象:一条直线,过(0,b),(,0)两点。 性质:
(1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。
k,b决定函数图像的位置:
y=kx时,y与x成正比例:
当k>0时,直线必通过第一、三象限,y随x的增大而增大;
当k<0时,直线必通过第二、四象限,y随x的增大而减小。
y=kx+b时:
当 k>0,b>0, 这时此函数的图象经过第一、二、三象限;
当 k>0,b<0,这时此函数的图象经过第一、三、四象限;
当 k<0,b>0,这时此函数的图象经过第一、二、四象限;
当 k<0,b<0,这时此函数的图象经过第二、三、四象限。
当b>0时,直线必通过第一、二象限;
当b<0时,直线必通过第三、四象限。
特别地,当b=0时,直线经过原点O(0,0)。
这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。
当k<0时,直线只通过第二、四象限,不会通过第一、三象限。特殊位置关系:
当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;
当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)一次函数的- 画法:
(1)列表:表中给出一些自变量的值及其对应的函数值。
(2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
一般地,y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点画出即可。
(3)连线: 按照横坐标由小到大的顺序把描出的各点用直线连接起来。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |