如图,已知射线DE与x轴和y轴分别交于点D(3,0)和点E(0,4),动点C从点M(5,0)出发,以1个单位长度/秒的速度沿x轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长度-九年级数学
题文
如图,已知射线DE与x轴和y轴分别交于点D(3,0)和点E(0,4),动点C从点M(5,0)出发,以1个单位长度/秒的速度沿x轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向作匀速运动,设运动时间为t秒。 (1)直接写出直线DE的解析式; (2)请用含t的代数式分别表示出点C与点P的坐标; (3)以点C为圆心、个单位长度为半径的⊙C与x轴交于A、B两点(点A在点B的左侧),连接PA、PB。 ①当⊙C与射线DE有公共点时,求t的取值范围; ②当△PAB为等腰三角形时,求t的值。 |
答案
解:(1); (2),; |
|
(3)①当⊙C的圆心C由点M(5,0)向左运动,使A点到点D并随⊙C继续向左运动时,有,即, 当点C在点D左侧时,过点C作CF⊥射线DE,垂足为F, 则由∠CDF=∠EDO,得△CDF∽△EDO, 则,解得, 由t,即,解得, ∴当⊙C与射线DE有公共点时,t的取值范围为; ②当PA=AB时,过P作PQ⊥x轴,垂足为Q, 有PA2=PQ2+AQ2=, ∴即,解得, 当时,有, ∴,解得, 当时,有, ∴, 即,解得(不合题意,舍去), ∴当是等腰三角形时,,或,或t=5,或。 |
据专家权威分析,试题“如图,已知射线DE与x轴和y轴分别交于点D(3,0)和点E(0,4),动点..”主要考查你对 求一次函数的解析式及一次函数的应用,写代数式,一元二次方程的应用,直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离),相似三角形的性质 等考点的理解。关于这些考点的“档案”如下:
求一次函数的解析式及一次函数的应用写代数式一元二次方程的应用直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)相似三角形的性质
考点名称:求一次函数的解析式及一次函数的应用
- 待定系数法求一次函数的解析式:
先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。
一次函数的应用:
应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
(1)有图像的,注意坐标轴表示的实际意义及单位;
(2)注意自变量的取值范围。 用待定系数法求一次函数解析式的四个步骤:
第一步(设):设出函数的一般形式。(称一次函数通式)
第二步(代):代入解析式得出方程或方程组。
第三步(求):通过列方程或方程组求出待定系数k,b的值。
第四步(写):写出该函数的解析式。
一次函数的应用涉及问题:
一、分段函数问题
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
合实际。二、函数的多变量问题
解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
求可以反映实际问题的函数三、概括整合
(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
(2)理清题意是采用分段函数解决问题的关键。
生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)一次函数应用常用公式:
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:(x1+x2)/2
3.求与y轴平行线段的中点:(y1+y2)/2
4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
5.求两个一次函数式图像交点坐标:解两函数式
两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
(x,y)为 + ,+(正,正)时该点在第一象限
(x,y)为 - ,+(负,正)时该点在第二象限
(x,y)为 - ,-(负,负)时该点在第三象限
(x,y)为 + ,-(正,负)时该点在第四象限
8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
10.
y=k(x-n)+b就是直线向右平移n个单位
y=k(x+n)+b就是直线向左平移n个单位
y=kx+b+n就是向上平移n个单位
y=kx+b-n就是向下平移n个单位
口决:左加右减相对于x,上加下减相对于b。
11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)
考点名称:写代数式
- 代数式:
由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。
数的一切运算规律也适用于代数式。单独的一个数或者一个字母也是代数式。
例如:ax+2b,-2/3,b^2/26,√a+√2等。
带有“(≥)” “=”“≠”等符号的不是代数式
注意:
1、不包括等于号(=、≡)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈。
2、可以有绝对值。例如:|x|,|-2.25| 等。 - 代数式的书写要求:
一、数字与数字相乘时,中间的乘号不能用“? ”代替,更不能省略不写。
如:4乘5,写作4×5,不能写成4?5,更不能写成45
二、数字与字母相乘时,中间的乘号可以省略不写,并且数字放在字母的前面。
如: a的5倍,写作:5a 不要写成a5。
三、两个字母相乘时,中间的乘号可以省略不写,字母无顺序性
如: a乘b ,写成ab或ba
四、当字母和带分数相乘时,要把带分数化成假分数。
如:3 1/2 乘a 写作:7/2 a 不要写成32/1a
五、含有字母的除法运算中,最后结果要写成分数形式,分数线相当于除号。
如:5除以a 写作5/a , 不要写成5÷a ; c除以 d写作 ,不要写成 c÷ d
六、如果代数式后面带有单位名称,是乘除运算结果的直接将单位名称写在代数式后面,若代数式是带加减运算且须注明单位的,要把代数式括起来,后面注明单位。
如:甲同学买了5本书,乙同学买了a 本书,他们一共买了(5+a )本。 代数式的书写格式:
(1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;
(2)数字要写在前面;
(3)带分数一定要写成假分数;
(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;
(5)式子后面有单位时,和差形式的代数式要在单位前把代数式括起来。- 代数式:
考点名称:一元二次方程的应用
- 建立一元二次方程模型进行求解,把得到的答案带回实际问题中检验是否合理,来解决实际问题,如打折、营销、增长率问题等。
列一元二次次方程组解应用题的一般步骤:
可概括为“审、设、列、解、答”五步,即:
(1)审:是指读懂题意,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的关系;
(2)设:是指设未知数;
(3)列:就是列方程,这是非常重要的一步,一般先找出能够表达应用题全部含义的一个等量关系,然后列代数式表示等量关系中的各个量,就得到含有未知数的等式,即方程;
(4)解:解这个方程,求出两个未知数的值;
(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案。
提示:
①列方程解应用题时,要善于将普通语言化为数学语言,审题时,要特别注意关键词语,如“多、少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等。
②注重解法选择与验根,在具体问题中要注意恰当的选择解法,以保证解题过程简单流畅,特别注意要对方程的解进行检验,根据实际情况作出正确取舍,以保证结论的准确性。
常见题型公式:
工程问题:
工程问题中的三个量及其关系为:工作总量=工作效率×工作时间
经常在题目中未给出工作总量时,设工作总量为单位1。利润赢亏问题
销售问题中常出现的量有:进价、售价、标价、利润等
有关关系式:
商品利润=商品售价—商品进价=商品标价×折扣率—商品进价
商品利润率=商品利润/商品进价
商品售价=商品标价×折扣率存款利率问题:
利息=本金×利率×期数
本息和=本金+利息
利息税=利息×税率(20%)行程问题:
基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,
路程=速度×时间。
①相遇问题:快行距+慢行距=原距;
②追及问题:快行距-慢行距=原距;
③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度,
逆水(风)速度=静水(风)速度-水流(风)速度
考点名称:直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)
直线与圆的位置关系:
直线与圆的位置关系有三种:直线与圆相交,直线与圆相切,直线与圆相离。
(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点AB与⊙O相交,d<r;
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。
(3)相离:直线和圆没有公共点时,叫做直线和圆相离,AB与圆O相离,d>r。(d为圆心到直线的距离)- 直线与圆的三种位置关系的判定与性质:
(1)数量法:通过比较圆心O到直线距离d与圆半径的大小关系来判定,
如果⊙O的半径为r,圆心O到直线l的距离为d,则有:
直线l与⊙O相交d<r;
直线l与⊙O相切d=r;
直线l与⊙O相离d>r;
(2)公共点法:通过确定直线与圆的公共点个数来判定。
直线l与⊙O相交d<r2个公共点;
直线l与⊙O相切d=r有唯一公共点;
直线l与⊙O相离d>r无公共点 。
圆的切线的判定和性质
(1)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
(2)切线的性质定理:圆的切线垂直于经过切点的半径。
切线长:
在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
切线长定理:
从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。 - 直线与圆的位置关系判定方法:
平面内,直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x2+y2+Dx+Ey+F=0,即成为一个关于x的方程
如果b2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x2+y2+Dx+Ey+F=0化为(x-a)2+(y-b)2=r2。
令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:
当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;
当x1<x=-C/A<x2时,直线与圆相交。
考点名称:相似三角形的性质
相似三角形性质定理:
(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
(6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
(7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项
(8)c/d=a/b 等同于ad=bc.
(9)不必是在同一平面内的三角形里
①相似三角形对应角相等,对应边成比例.
②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
③相似三角形周长的比等于相似比定理推论:
推论一:顶角或底角相等的两个等腰三角形相似。
推论二:腰和底对应成比例的两个等腰三角形相似。
推论三:有一个锐角相等的两个直角三角形相似。
推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |