在平面直角坐标系xOy中,直线y=-x+m经过点A(2,0),交y轴于点B,点D为x轴上一点,且S△ADB=1。(1)求m的值;(2)求线段OD的长;(3)当点E在直线AB上(点E与点B不重合),且∠BDO=∠E-八年级数学
题文
在平面直角坐标系xOy中,直线y=-x+m经过点A(2,0),交y轴于点B,点D为x轴上一点,且S△ADB=1。 (1)求m的值; (2)求线段OD的长; (3)当点E在直线AB上(点E与点B不重合),且∠BDO=∠EDA,求点E的坐标。 |
(备用图) |
答案
解:(1 )∵直线y=-x+m 经过点A (2 ,0 ), ∴0=-2+m , ∴m=2 ; (2 )∵直线y=-x+2 交y 轴于点B , ∴点B 的坐标为(0 ,2 ), ∴OB=2 , ∵S △ADB=AD·OB=1 , ∴AD=1 , ∵点A 的坐标为(2 ,0 ), ∴点D 的坐标为(1 ,0 )或(3 ,0 ), ∴OD=1 或OD=3 ; (3 )①当点D 的坐标为(1 ,0 )时,如图所示, 取点B ′(0 ,-2 ),连接B ′D 并延长,交直线BA 于点E . ∵OB=OB ′,AO ⊥BB ′于O , ∴OD 为BB ′的垂直平分线. ∴DB=DB ′, ∴∠1= ∠2 . 又∵∠2= ∠3 , ∴∠1= ∠3 , 设直线B ′D 的解析式为y=kx-2 (k ≠0 ), ∵直线B ′D 经过点D (1 ,0 ), ∴0=k-2 , ∴k=2 , ∴直线B ′D 的解析式为y=2x-2 , 联立得, 解得, ∴点E 的坐标为(,); ②当点D 的坐标为(3 ,0 )时,如图所示, 取点B ′(0 ,-2 ),连接B ′D ,交直线BA 于点E , 同①的方法,可得∠1= ∠2 , 直线B ′D 的解析式为y=x-2 , 联立得 , 解得 , ∴点E 的坐标为( ,- ), 综上所述,点E 的坐标为( , )或(,-)。 |
据专家权威分析,试题“在平面直角坐标系xOy中,直线y=-x+m经过点A(2,0),交y轴于点B,..”主要考查你对 求一次函数的解析式及一次函数的应用,垂直平分线的性质 等考点的理解。关于这些考点的“档案”如下:
求一次函数的解析式及一次函数的应用垂直平分线的性质
考点名称:求一次函数的解析式及一次函数的应用
- 待定系数法求一次函数的解析式:
先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。
一次函数的应用:
应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
(1)有图像的,注意坐标轴表示的实际意义及单位;
(2)注意自变量的取值范围。 用待定系数法求一次函数解析式的四个步骤:
第一步(设):设出函数的一般形式。(称一次函数通式)
第二步(代):代入解析式得出方程或方程组。
第三步(求):通过列方程或方程组求出待定系数k,b的值。
第四步(写):写出该函数的解析式。
一次函数的应用涉及问题:
一、分段函数问题
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
合实际。二、函数的多变量问题
解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
求可以反映实际问题的函数三、概括整合
(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
(2)理清题意是采用分段函数解决问题的关键。
生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)一次函数应用常用公式:
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:(x1+x2)/2
3.求与y轴平行线段的中点:(y1+y2)/2
4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
5.求两个一次函数式图像交点坐标:解两函数式
两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
(x,y)为 + ,+(正,正)时该点在第一象限
(x,y)为 - ,+(负,正)时该点在第二象限
(x,y)为 - ,-(负,负)时该点在第三象限
(x,y)为 + ,-(正,负)时该点在第四象限
8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
10.
y=k(x-n)+b就是直线向右平移n个单位
y=k(x+n)+b就是直线向左平移n个单位
y=kx+b+n就是向上平移n个单位
y=kx+b-n就是向下平移n个单位
口决:左加右减相对于x,上加下减相对于b。
11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)
考点名称:垂直平分线的性质
- 垂直平分线的概念:
垂直于一条线段并且平分这条线段的直线,叫做这条线段的垂直平分线(中垂线)。
如图:直线MN即为线段AB的垂直平分线。 - 垂直平分线的性质:
1.垂直平分线垂直且平分其所在线段。
2.垂直平分线上任意一点,到线段两端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
3.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
4.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相 等。
(此时以外心为圆心,外心到顶点的长度为半径,所作的圆为此三角形的外接圆。)
判定:
①利用定义;
②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(即线段垂直平分线可以看成到线段两端点距离相等的点的集合) 尺规作法:(用圆规作图)
1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。
2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。得到两个交点(两交点交与线段的异侧)。
3、连接这两个交点。
原理:等腰三角形的高垂直平分底边。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |