甲船从A港出发顺流匀速驶向B港,行至某处,发现船上﹣救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港。乙船从B港出发逆流匀速驶向A港。已知救生圈漂流-八年级数学

题文

甲船从A港出发顺流匀速驶向B港,行至某处,发现船上﹣救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港。乙船从B港出发逆流匀速驶向A港。已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同。甲、乙两船到A港的距离y1、y2(km)与行驶时间x(h)之间的函数图象如图所示。
(1)写出乙船在逆流中行驶的速度。
(2)求甲船在逆流中行驶的路程。
(3)求甲船到A港的距离y1与行驶时间x之间的函数关系式。
(4)求救生圈落入水中时,甲船到A港的距离.参考公式:船顺流航行的速度=船在静水中航行的速度+水流速度,船逆流航行的速度=船在静水中航行的速度﹣水流速度。
题型:解答题  难度:中档

答案

解:(1)根据图象可知,乙船在逆流中4小时行驶了24千米,
∴乙船在逆流中行驶的速度为24÷4=6(km/h)。
(2)∵甲、乙两船在静水中的速度相同,且在逆流中行驶的图象互相平行,
∴甲、乙两船在逆流中行驶的速度也相同是6km/h;
又∵由图象可知,甲船在逆流中行驶的时间为2.5﹣2=0.5(h),
∴甲船在逆流中行驶的路程为6×0.5=3(km)。
(3)方法一:设甲船顺流的速度为akm/h,
由图象得2a﹣3+(3.5﹣2.5)a=24。
解得a=9。
当0≦x≦2时,y1=9x
当2≦x≦2.5时,设y1=﹣6x+b1
把x=2,y1=18代入,得b1=30。
∴y1=﹣6x+30
当2.5≦x≦3.5时,设y1=9x+b2
把x=3.5,y1=24代入,得b2=﹣7.5
∴y1=9x﹣7.5
方法二:设甲船顺流的速度为akm/h
由图象得2a﹣3+(3.5﹣2.5)a=24,
解得a=9
当0≦x≦2时,y1=9x
令x=2,则y1=18
当2≦x≦2.5时,y1=18﹣6(x﹣2),
即y1=﹣6x+30
令x=2.5,则y1=15
当2.5≦x≦3.5时,y1=15+9(x﹣2.5),
y1=9x﹣7.5
(4)水流速度为(9﹣6)÷2=1.5(km/h)
设甲船从A港航行x小时救生圈掉落水中
根据题意,得9x+1.5(2.5﹣x)=9×2.5﹣7.5,
解得x=1.5.
1.5×9=13.5
即救生圈落水时甲船到A港的距离为13.5km。

据专家权威分析,试题“甲船从A港出发顺流匀速驶向B港,行至某处,发现船上﹣救生圈不知何..”主要考查你对  求一次函数的解析式及一次函数的应用,函数的图像  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用函数的图像

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

考点名称:函数的图像

  • 函数图象的概念:
    对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.

  • 由函数解析式画其图象的一般步骤:
    ①列表:列表给出自变量与函数的一些对应值;
    ②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
    ③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.

    利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.

    函数图象上的点的坐标与其解析式之间的关系:
    ①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;
    ②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;
    ③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐