如图,已知直线l1:y=﹣x+2与直线l2:y=2x+8相交于点F,l1、l2分别交x轴于点E、G,矩形ABCD顶点C、D分别在直线l1、l2,顶点A、B都在x轴上,且点B与点G重合.(1)求点F的坐标和∠GE-八年级数学
题文
如图,已知直线l1:y=﹣x+2与直线l2:y=2x+8相交于点F,l1、l2分别交x轴于点E、G,矩形ABCD顶点C、D分别在直线l1、l2,顶点A、B都在x轴上,且点B与点G重合. (1)求点F的坐标和∠GEF的度数; (2)求矩形ABCD的边DC与BC的长; (3)若矩形ABCD从原地出发,沿x轴正方向以每秒1个单位长度的速度平移,设移动时间为t(0≦t≦6)秒,矩形ABCD与△GEF重叠部分的面积为s,求s关于t的函数关系式,并写出相应的t的取值范围. |
答案
解:(1)由题意得, 解得x=﹣2,y=4, ∴F点坐标:(﹣2,4); 过F点作直线FM垂直X轴交x轴于M,ME=MF=4,△MEF是等腰直角三角形,∠GEF=45°;(2)由图可知G点的坐标为(﹣4,0),则C点的横坐标为﹣4, ∵点C在直线l1上, ∴点C的坐标为(﹣4,6), ∵由图可知点D与点C的纵坐标相同,且点D在直线l2上, ∴点D的坐标为(﹣1,6), ∵由图可知点A与点D的横坐标相同,且点A在x轴上, ∴点A的坐标为(﹣1,0), ∴DC=|﹣1﹣(﹣4)|=3,BC=6; (3)∵点E是l1与x轴的交点, ∴点E的坐标为(2,0), S△GFE===12, 若矩形ABCD从原地出发,沿x轴正方向以每秒1个单位长度的速度平移, 当t秒时,移动的距离是1×t=t,则B点的坐标为(﹣4+t,0),A点的坐标为(﹣1+t,0);①在运动到t秒,若BC边与l2相交设交点为N,AD与l1相交设交点为K, 那么﹣4≦﹣4+t≦﹣2,即0≦t≦2时. N点的坐标为(﹣4+t,2t),K点的坐标为(﹣1+t,3﹣t), s=S△GFE﹣S△GNB﹣S△AEK=12﹣=, ②在运动到t秒,若BC边与l1相交设交点为N,AD与l1相交设交点为K, 那么﹣2<﹣4+t且﹣1+t≦3,即2<t≦4时. N点的坐标为(﹣4+t,6﹣t),K点的坐标为(﹣1+t,3﹣t), s=S梯形BNKA==, ③在运动到t秒,若BC边与l1相交设交点为N,AD与l1不相交, 那么﹣4+t≦3且﹣1+t>3,即4<t≦7时. N点的坐标为(﹣4+t,6﹣t), s=S△BNE==, 答:(1)F点坐标:(﹣2,4),∠GEF的度数是45°; (2)矩形ABCD的边DC的长为3,BC的长为6; (3)s关于t的函数关系式. |
据专家权威分析,试题“如图,已知直线l1:y=﹣x+2与直线l2:y=2x+8相交于点F,l1、l2分别交..”主要考查你对 求一次函数的解析式及一次函数的应用 等考点的理解。关于这些考点的“档案”如下:
求一次函数的解析式及一次函数的应用
考点名称:求一次函数的解析式及一次函数的应用
- 待定系数法求一次函数的解析式:
先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。
一次函数的应用:
应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
(1)有图像的,注意坐标轴表示的实际意义及单位;
(2)注意自变量的取值范围。 用待定系数法求一次函数解析式的四个步骤:
第一步(设):设出函数的一般形式。(称一次函数通式)
第二步(代):代入解析式得出方程或方程组。
第三步(求):通过列方程或方程组求出待定系数k,b的值。
第四步(写):写出该函数的解析式。
一次函数的应用涉及问题:
一、分段函数问题
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
合实际。二、函数的多变量问题
解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
求可以反映实际问题的函数三、概括整合
(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
(2)理清题意是采用分段函数解决问题的关键。
生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)一次函数应用常用公式:
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:(x1+x2)/2
3.求与y轴平行线段的中点:(y1+y2)/2
4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
5.求两个一次函数式图像交点坐标:解两函数式
两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
(x,y)为 + ,+(正,正)时该点在第一象限
(x,y)为 - ,+(负,正)时该点在第二象限
(x,y)为 - ,-(负,负)时该点在第三象限
(x,y)为 + ,-(正,负)时该点在第四象限
8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
10.
y=k(x-n)+b就是直线向右平移n个单位
y=k(x+n)+b就是直线向左平移n个单位
y=kx+b+n就是向上平移n个单位
y=kx+b-n就是向下平移n个单位
口决:左加右减相对于x,上加下减相对于b。
11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |