四边形OABC是等腰梯形,OA∥BC,在建立如图的平面直角坐标系中,A(10,0),B(8,6),直线x=4与直线AC交于P点,与x轴交于H点;(1)直接写出C点的坐标,并求出直线AC的解析式;(-八年级数学
题文
四边形OABC是等腰梯形,OA∥BC,在建立如图的平面直角坐标系中,A(10,0),B(8,6),直线x=4与直线AC交于P点,与x轴交于H点; (1)直接写出C点的坐标,并求出直线AC的解析式; (2)求出线段PH的长度,并在直线AC上找到Q点,使得△PHQ的面积为△AOC面积的,求出Q点坐标; (3)M点是直线AC上除P点以外的一个动点,问:在x轴上是否存在N点,使得△MHN为等腰直角三角形?若有,请求出M点及对应的N点的坐标,若没有,请说明理由。 |
答案
解:(1)作CE⊥OA于点E,BF⊥OA于F, ∴∠CEO=∠BFA=90°,CE∥BF, ∴OA∥BC, ∴四边形ECBF是平行四边形, ∴CE=BF, ∵四边形OABC是等腰梯形, ∴OC=AB, ∴△OEC≌△AFB, ∴OE=AF, ∵A(10,0),B(8,6), ∴0A=10,OF=8,BF=6, ∴OE=2 ∴C(2,6) ∵直线AC过点A(10,0),C(2,6), 设直线AC解析式为:y=kx+b(k≠0) 根据题意得: 解得:k=,b=, ∴直线AC:y=x+ (2)将x=4代入上述解析式,y=,即PH= ∵Q点在直线AC上,设Q点坐标为(t,t+) 由题知:PH·|t﹣4|=×OA·|yC|, 解得t=或, 即满足题意的Q点有两个,分别是Q1(,)或Q2(,) (3)存在满足题意的M点和N点。 设M点坐标为(a,a+), 当a>10时,无满足题意的点; ①若∠MNH=90°,则MN=HN,即a+=|a﹣4|, 解得a=或﹣14, 此时M点坐标为(,)或(﹣14,18); ②若∠HMN=90°,则过M作MM'⊥x轴交于M'点, 则H M'=M'N=M M', 综上,当M点坐标为(,)时,N点坐标为N1(,0)或N2(,0); 当M点坐标为(﹣14,18)时,N点坐标为N3(﹣14,0)或N4(﹣32,0)。 |
据专家权威分析,试题“四边形OABC是等腰梯形,OA∥BC,在建立如图的平面直角坐标系中,A..”主要考查你对 求一次函数的解析式及一次函数的应用,等腰三角形的性质,等腰三角形的判定,三角形的周长和面积 等考点的理解。关于这些考点的“档案”如下:
求一次函数的解析式及一次函数的应用等腰三角形的性质,等腰三角形的判定三角形的周长和面积
考点名称:求一次函数的解析式及一次函数的应用
- 待定系数法求一次函数的解析式:
先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。
一次函数的应用:
应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
(1)有图像的,注意坐标轴表示的实际意义及单位;
(2)注意自变量的取值范围。 用待定系数法求一次函数解析式的四个步骤:
第一步(设):设出函数的一般形式。(称一次函数通式)
第二步(代):代入解析式得出方程或方程组。
第三步(求):通过列方程或方程组求出待定系数k,b的值。
第四步(写):写出该函数的解析式。
一次函数的应用涉及问题:
一、分段函数问题
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
合实际。二、函数的多变量问题
解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
求可以反映实际问题的函数三、概括整合
(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
(2)理清题意是采用分段函数解决问题的关键。
生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)一次函数应用常用公式:
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:(x1+x2)/2
3.求与y轴平行线段的中点:(y1+y2)/2
4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
5.求两个一次函数式图像交点坐标:解两函数式
两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
(x,y)为 + ,+(正,正)时该点在第一象限
(x,y)为 - ,+(负,正)时该点在第二象限
(x,y)为 - ,-(负,负)时该点在第三象限
(x,y)为 + ,-(正,负)时该点在第四象限
8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
10.
y=k(x-n)+b就是直线向右平移n个单位
y=k(x+n)+b就是直线向左平移n个单位
y=kx+b+n就是向上平移n个单位
y=kx+b-n就是向下平移n个单位
口决:左加右减相对于x,上加下减相对于b。
11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)
考点名称:等腰三角形的性质,等腰三角形的判定
- 定义:
有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。 等腰三角形的性质:
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方
9.等腰三角形中腰大于高
10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)等腰三角形的判定:
1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。
考点名称:三角形的周长和面积
- 三角形的概念:
由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
构成三角形的元素:
边:组成三角形的线段叫做三角形的边;
顶点:相邻两边的公共端点叫做三角形的顶点;
内角:相邻两边所组成的角叫做三角形的内角,简称三角形的角。
三角形有下面三个特性:
(1)三角形有三条线段;
(2)三条线段不在同一直线上;
(3)首尾顺次相接。
三角形的表示:
用符号“△,顶点是A、B、C的三角形记作“△ABC”,读作ABC”。 - 三角形的分类:
(1)三角形按边的关系分类如下:
;
(2)三角形按角的关系分类如下:
把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。 - 三角形的周长和面积:
三角形的周长等于三角形三边之和。
三角形面积=(底×高)÷2。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |