在梯形ABCD中,AD∥BC,,BC=11cm,点P从点D开始沿DA边以每秒1cm的速度移动,点Q从点B开始沿BC边以每秒2cm的速度移动(当点P到达点A时,点P与点Q同时停止移动),假设点P移动的-八年级数学
题文
在梯形ABCD中, AD∥BC, ,BC=11cm,点P从点D开始沿DA边以每秒1cm的速度移动,点Q从点B开始沿BC边以每秒2cm的速度移动(当点P到达点A时,点P与点Q同时停止移动),假设点P移动的时间为x(秒),四边形ABQP的面积为y(cm2). (1)求y关于x的函数解析式,并写出它的定义域; (2)在移动的过程中,求四边形ABQP的面积与四边形QCDP的面积相等时x的值; (3)在移动的过程中,是否存在 使得PQ=AB,若存在求出所有x的值,若不存在请说明理由. |
答案
解:(1)过A作垂足为E,过D作垂足为F 易证 ∵ ∴四边形AEFD是平行四边形 ∴EF=AD=5,AE=DF ∵AB=CD=5 ∴RT△ABE≌RT△DCF ∴BE=CF ∵ ∴BE=CF=3 在RT△ABE中, ∵ ∴ 定义域为 (2)同(1)理 ∵ ∴ 解得x=3 ∴当四边形ABQP与四边形QCDP的面积相等时x=3 (3)当四边形ABQP是平行四边形时,PQ=AB , 此时AP=BQ,可得 ,解得 当四边形QCDP是平行四边形时,可得PQ=CD ∵CD=AB ∴PQ=AB 此时 , 可得 解得 综上所述,在移动的过程中,当时,PQ=AB. |
据专家权威分析,试题“在梯形ABCD中,AD∥BC,,BC=11cm,点P从点D开始沿DA边以每秒1cm的..”主要考查你对 求一次函数的解析式及一次函数的应用,平行四边形的性质,平行四边形的判定 等考点的理解。关于这些考点的“档案”如下:
求一次函数的解析式及一次函数的应用平行四边形的性质平行四边形的判定
考点名称:求一次函数的解析式及一次函数的应用
- 待定系数法求一次函数的解析式:
先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。
一次函数的应用:
应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
(1)有图像的,注意坐标轴表示的实际意义及单位;
(2)注意自变量的取值范围。 用待定系数法求一次函数解析式的四个步骤:
第一步(设):设出函数的一般形式。(称一次函数通式)
第二步(代):代入解析式得出方程或方程组。
第三步(求):通过列方程或方程组求出待定系数k,b的值。
第四步(写):写出该函数的解析式。
一次函数的应用涉及问题:
一、分段函数问题
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
合实际。二、函数的多变量问题
解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
求可以反映实际问题的函数三、概括整合
(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
(2)理清题意是采用分段函数解决问题的关键。
生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)一次函数应用常用公式:
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:(x1+x2)/2
3.求与y轴平行线段的中点:(y1+y2)/2
4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
5.求两个一次函数式图像交点坐标:解两函数式
两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
(x,y)为 + ,+(正,正)时该点在第一象限
(x,y)为 - ,+(负,正)时该点在第二象限
(x,y)为 - ,-(负,负)时该点在第三象限
(x,y)为 + ,-(正,负)时该点在第四象限
8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
10.
y=k(x-n)+b就是直线向右平移n个单位
y=k(x+n)+b就是直线向左平移n个单位
y=kx+b+n就是向上平移n个单位
y=kx+b-n就是向下平移n个单位
口决:左加右减相对于x,上加下减相对于b。
11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)
考点名称:平行四边形的性质
- 平行四边形的概念:
两组对边分别平行的四边形叫做平行四边形。
平行四边形用符号“□ABCD,如平行四边形ABCD记作“□ABCD”,读作ABCD”。
①平行四边形属于平面图形。
②平行四边形属于四边形。
③平行四边形中还包括特殊的平行四边形:矩形,正方形和菱形等。
④平行四边形属于中心对称图形。 平行四边形的性质:
主要性质
(矩形、菱形、正方形都是特殊的平行四边形。)
(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的两组对边分别相等”)
(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的两组对角分别相等”)
(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补
(简述为“平行四边形的邻角互补”)
(4)夹在两条平行线间的平行线段相等。
(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的对角线互相平分”)
(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)
(7)平行四边形的面积等于底和高的积。(可视为矩形)
(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(9)平行四边形是中心对称图形,对称中心是两对角线的交点.
(10)平行四边形不是轴对称图形,矩形和菱形是轴对称图形。
注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。
(11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。
(12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。
(13)平行四边形对角线把平行四边形面积分成四等分。
(14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。
(15)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。
考点名称:平行四边形的判定
- 平行四边形的判定:
(1)定义:两组对边分别平行的四边形是平行四边形;
(2)定理1:两组对角分别相等的四边形是平行四边形;
(3)定理2:两组对边分别相等的四边形是平行四边形;
(4)定理3:对角线互相平分的四边形是平行四边形
(5)定理4:一组对边平行且相等的四边形是平行四边形。
平行四边形的面积:S=底×高。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |