A市、B市和C市分别有某种机器20台、20台和16台.现在决定把这些机器支援给D市36台,E市20台.已知:从A市调运一台机器到D市、E市的运费分别为400元和1600元;从B市调运一台机器-数学
题文
A市、B市和C市分别有某种机器20台、20台和16台.现在决定把这些机器支援给D市36台,E市20台.已知:从A市调运一台机器到D市、E市的运费分别为400元和1600元;从B市调运一台机器到D市、E市的运费分别为600元人1400元;从C市调运一台机器到D市、E市的运费分别为800元和1000元. (1)设从A市、B市各调运x台到D市,当56台机器全部调运完毕后,求总运费W(元)关于x(台)的函数式,并求W的最小值和最大值. (2)设从A市调运x台到D市,B市调运y台到D市,当56台机器全部调运完毕后,用x,y表示总运费W(元),并求W的最小值和最大值. |
答案
(1)从A市、B市各调x台到D市,则从C市可调36-2x台到D市,从A市调20-x台到E市,从B市调20-x台到E市,从C市调16-(36-2x)=2x-20台到E市, 其中每一次调动都需要大于或等于0,可知x的取值范围为10≤x≤18. ∴W=400x+1600(20-x)+600x+1400(20-x)+800(36-2x)+1000(2x-20)=-1600x+68800, 可知k=-1600<0, 当x=10时,Wmax=52800,当x=18时,Wmin=10000,W最小为40000元. (2)当从A市调x台到D市,B市调y台到D市,可知从C市调36-x-y到D市,从A市调20-x台到E市,从B市调20-y台到E市,从C市调16-(36-x-y)=x+y-20台到E市, 可得20≤x+y≤36,0≤x≤20,0≤y≤20. 可知:W=400x+1600(20-x)+600y+1400(20-y)+800(36-x-y)+1000(x+y-20) =-1000x-600y+68800 =-600(x+y)-400x+68800, 当x+y=20,x=0时,Wmax=56800,W最大为56800. 当x+y=36,x=20时,Wmin=41200,W最小为39200. |
据专家权威分析,试题“A市、B市和C市分别有某种机器20台、20台和16台.现在决定把这些机..”主要考查你对 求一次函数的解析式及一次函数的应用 等考点的理解。关于这些考点的“档案”如下:
求一次函数的解析式及一次函数的应用
考点名称:求一次函数的解析式及一次函数的应用
- 待定系数法求一次函数的解析式:
先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。
一次函数的应用:
应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
(1)有图像的,注意坐标轴表示的实际意义及单位;
(2)注意自变量的取值范围。 用待定系数法求一次函数解析式的四个步骤:
第一步(设):设出函数的一般形式。(称一次函数通式)
第二步(代):代入解析式得出方程或方程组。
第三步(求):通过列方程或方程组求出待定系数k,b的值。
第四步(写):写出该函数的解析式。
一次函数的应用涉及问题:
一、分段函数问题
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
合实际。二、函数的多变量问题
解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
求可以反映实际问题的函数三、概括整合
(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
(2)理清题意是采用分段函数解决问题的关键。
生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)一次函数应用常用公式:
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:(x1+x2)/2
3.求与y轴平行线段的中点:(y1+y2)/2
4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
5.求两个一次函数式图像交点坐标:解两函数式
两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
(x,y)为 + ,+(正,正)时该点在第一象限
(x,y)为 - ,+(负,正)时该点在第二象限
(x,y)为 - ,-(负,负)时该点在第三象限
(x,y)为 + ,-(正,负)时该点在第四象限
8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
10.
y=k(x-n)+b就是直线向右平移n个单位
y=k(x+n)+b就是直线向左平移n个单位
y=kx+b+n就是向上平移n个单位
y=kx+b-n就是向下平移n个单位
口决:左加右减相对于x,上加下减相对于b。
11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |