我区A,B两村盛产荔枝,A村有荔枝200吨,B村有荔枝300吨.现将这些荔枝运到C,D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C,D两处的费用分别为每吨2-数学

题文

我区A,B两村盛产荔枝,A村有荔枝200吨,B村有荔枝300吨.现将这些荔枝运到C,D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C,D两处的费用分别为每吨20元和25元,从B村运往C,D两处的费用分别为每吨15元和18元.设从A村运往C仓库的荔枝重量为x吨,A,B两村运往两仓库的荔枝运输费用分别为yA元和yB元.
(1)请填写下表,并求出yA,yB与x之间的函数关系式;
C D 总计
A x吨 200吨
B 300吨
总计 240吨 260吨 500吨
(2)试讨论A,B两村中,哪个村的运费较少;
(3)考虑到B村的经济承受能力,B村的荔枝运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.
题型:解答题  难度:中档

答案

(1)A,B两村运输荔枝情况如表,
收收地地运运地地 C D 总计
A x吨 200-x 200吨
B 240-x x+60 300吨
总计 240吨 260吨 500吨
yA=20x+25(200-x)=5000-5x,
yB=15(240-x)+18(x+60)=3x+4680(0≤x≤240);

(2)①当yA=yB,即5000-5x=3x+4680,
解得x=40,
当x=40,两村的运费一样多,
②当yA>yB,即5000-5x>3x+4680,
解得x<40,
当0<x<40时,A村运费较高,
③当yA<yB,即5000-5x<3x+4680,
解得x>40,
当40<x≤200时,B村运费较高;

(3)B村的荔枝运费不得超过4830元,
yB=3x+4680≤4830,
解得x≤50,
两村运费之和为yA+yB=5000-5x+3x+4680=9680-2x,
要使两村运费之和最小,所以x的值取最大时,运费之和最小,
故当x=50时,最小费用是9680-2×50=9580(元).

据专家权威分析,试题“我区A,B两村盛产荔枝,A村有荔枝200吨,B村有荔枝300吨.现将这些..”主要考查你对  求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐