某工厂有14m长的旧墙一面,现在准备利用这面旧墙,建造平面图形为矩形,面积为126m2的厂房,工程条件为:①建1m新墙的费用为a元;②修1m旧墙的费用为a4元;③拆去1m旧墙,用所得-数学

题文

某工厂有14m长的旧墙一面,现在准备利用这面旧墙,建造平面图形为矩形,面积为126m2的厂房,工程条件为:①建1m新墙的费用为a元;②修1m旧墙的费用为
a
4
元;③拆去1m旧墙,用所得材料建造1m新墙的费用为
a
2
元.经过讨论有两种方案:(Ⅰ)利用旧墙的一段xm(x<14)为矩形厂房一面的边长;(Ⅱ)矩形厂房利用旧墙的一面边长为x(x≥14).问:如何利用旧墙,即x为多少米时,建墙费用最省?(Ⅰ)(Ⅱ)两种方案哪个更好?
题型:解答题  难度:中档

答案

设利用旧墙的一面矩形边长为xm,则矩形的另一边长为
126
x
m.
(Ⅰ)利用旧墙的一段xm(x<14)为矩形一面边长,则修旧墙费用为x?
a
4
元,
将剩余的旧墙拆得材料建新墙的费用为(14-x)?
a
2
元,其余建新墙的费用为(2x+
2×126
x
-14)?a元.
故总费用为
y=x?
a
4
+
14-x
2
?a+(2x+
252
x
-14)?a=a(
7
4
x+
252
x
-7)=7a(
x
4
+
36
x
-1).(0<x<14)
∴y≥7a[2

x
4
?
36
x
-1]=35a.当且仅当
x
4
=
36
x
,即x=12m时,ymin=35a(元);
(Ⅱ)若利用旧墙的一面矩形边长为x≥14,则修旧墙的费用为
a
4
?14=
7
2
a元,建新墙的费用为(2x+
252
x
-14)a元.
故总费用为y=
7
2
a+(2x+
252
x
-14)a=
7
2
a+2a(x+
126
x
-7)(x≥14).
设14≤x1<x2,则x1-x2<0,x1x2>196.
则(x1+
126
x1
)-(x2+
126
x2
)=(x1-x2)(1-
126
x1x2

∴函数y=x+
126
x
在区间[14,+∞]上为增函数.
故当x=14时,ymin=
7
2
a+2a(14+
126
14
-7)=35.5a>35a.
综上讨论可知,采用第(Ⅰ)方案,建墙总费用最省,为35a元.

据专家权威分析,试题“某工厂有14m长的旧墙一面,现在准备利用这面旧墙,建造平面图形为..”主要考查你对  求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)