玉树地震发生后,根据救灾指挥中心的信息,甲、乙两个重灾区急需一种大型挖掘机,甲地需要27台,乙地需要25台;A、B两省获知情况后慷慨相助,分别捐赠该型号挖掘机28台和24台-数学

题文

玉树地震发生后,根据救灾指挥中心的信息,甲、乙两个重灾区急需一种大型挖掘机,甲地需要27台,乙地需要25台;A、B两省获知情况后慷慨相助,分别捐赠该型号挖掘机28台和24台,并将其全部调运往灾区,如果从A省调运一台挖掘机到甲地耗资0.4万元,到乙地耗资0.3万元;从B省调运一台挖掘机到甲地耗资0.5万元,到乙地耗资0.2万元;设从A调往甲地x台挖掘机,A、B两省将捐赠的挖掘机全部调往灾区共耗资y万元:
灾区 调运台数(台) 捐赠省 甲 地 乙 地
A 省 x ______
B 省 ______ x-3
(1)请完成表格的填空
(2)若要使总耗资不超过16.2万元,有哪几种调运方案?哪种调运方案的总耗资最少?
题型:解答题  难度:中档

答案

(1)∵甲地一共需要27台,已经从A省运来x台,
∴从B应运来(27-x)台,
∵乙地需要25台,已经从B地运来(x-3)台,
∴应从A地再运来25-(x-3)=28-x(台),
故答案为:27-x,28-x;

(2)根据题意得:0.4x+0.5(27-x)+0.3(28-x)+0.2(x-3)≤16.2,
x≥25.5,
∵27-x≥0,28-x≥0,x-3≥0,
∴x的取值范围是25.5≤x≤27,
∵x表示机器的台数,
∴x只能取26和27,
即有两种调运方案;
①当x=26时,27-x=1,28-x=2,x-3=23,
即从A省运往甲地26台,运往乙地2台,而从B省运往甲地1台,运往乙地23台,
y=0.4×26+0.5×1+0.3×2+0.2×23=16.1(万元);
②当x=27时,27-x=0,28-x=1,x-3=24,
即从A省运往甲地27台,运往乙地1台,而从B省运往甲地0台,运往乙地24台,
y=0.4×27+0.5×0+0.3×1+0.2×24=15.9(万元)<16.1(万元),
即若要使总耗资不超过16.2万元,调运方案是①从A省运往甲地26台,运往乙地2台,而从B省运往甲地1台,运往乙地23台,②从A省运往甲地27台,运往乙地1台,而从B省运往甲地0台,运往乙地24台,①种调运方案的总耗资最少.

据专家权威分析,试题“玉树地震发生后,根据救灾指挥中心的信息,甲、乙两个重灾区急需..”主要考查你对  求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐