张老板有每套进价210元,售价300元的A牌子服装450套.现想一次性购进每套进价150元,售价300元的B牌子服装数套,但手里资金紧张,故与另一服装老板协商,形成如下转让意见:此-数学

题文

张老板有每套进价210元,售价300元的A牌子服装450套.现想一次性购进每套进价150元,售价300元的B牌子服装数套,但手里资金紧张,故与另一服装老板协商,形成如下转让意见:此时张老板面临两种选择:
①全部转让A牌子服装,转让资金都用于购进B牌子服装,只经营B牌子服装.
②转让部分A牌子服装,转让资金都用于购进B牌子服装,A,B牌子的服装都经营.
(1)写出y与x的一次函数关系式;
(2)假设相同时间内,上述选择都可按原售价销完服装.如何选择,利润最大?
转让套数x(套)   50 100  150  200  250  300  350  400  450 
 转让价格y(元/套)  205 200  195  190 185  180  175  170  165 
题型:解答题  难度:中档

答案

(1)设y=kx+b
把x=50,y=205;x=100,y=200分别代入解析式中

50k+b=205
100k+b=200

解得

k=-0.1
b=210

∴y=-0.1x+210;

(2)设转让x套A牌服装时,所获利润为w元
则w=(300-210)(450-x)-(210-y)x+(300-150)×
xy
150

把y=-0.1x+210代入
得y=-0.2x2+120x+40500,(0<x≤450)
∴w是x的二次函数
由二次函数的性质
当x=
-120
2×(-0.2)
=300时,w有最大值
答:转让A牌服装300套时,利润最大.

据专家权威分析,试题“张老板有每套进价210元,售价300元的A牌子服装450套.现想一次性购..”主要考查你对  求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)