如图,在平面直角坐标系xOy中,直线l1:y=-3x+63交x轴、y轴于A、B两点,点M(m,n)是线段AB上一动点,点C是线段OA的三等分点.(1)求点C的坐标;(2)连接CM,将△ACM绕点M旋转180°-数学

题文

如图,在平面直角坐标系xOy中,直线l1:y=-

3
x+6

3
交x轴、y轴于A、B两点,点M(m,n)是线段AB上一动点,点C是线段OA的三等分点.
(1)求点C的坐标;
(2)连接CM,将△ACM绕点M旋转180°,得到△A′C′M.
①当BM=
1
2
AM时,连接A′C、AC′,若过原点O的直线l2将四边形A′CAC′分成面积相等的两个四边形,确定此直线的解析式;
②过点A′作A′H⊥x轴于H,当点M的坐标为何值时,由点A′、H、C、M构成的四边形为梯形?
题型:解答题  难度:中档

答案

(1)根据题意:A(6,0),B(0,6

3

∵C是线段OA的三等分点
∴C(2,0)或C(4,0)

(2)①如图,过点M作MN⊥y轴于点N,
则△BMN∽△BAO
∵BM=
1
2
AM
∴BM=
1
3
BA
∴BN=
1
3
BO
∴N(0,4

3

∵点M在直线y=-

3
x+6

3

∴M(2,4

3

∵△A'C'M是由△ACM绕点M旋转180°得到的
∴A'C'∥AC
∴无论是C1、C2点,四边形A'CAC'是平行四边形且M为对称中心
∴所求的直线l2必过点M(2,4

3

∴直线l2的解析式为:y=2

3
x
②当C1(2,0)时,
第一种情况:H在C点左侧
若四边形A'HC1M是梯形
∵A'M与HC1不平行
∴A'H∥MC1此时M(2,4

3

第二种情况:H在C点右侧
若四边形A'C1HM是梯形
∵A'M与C1H不平行
∴A'C1∥HM
∵M是线段AA'的中点
∴H是线段AC1的中点
∴H(4,0)
由OA=6,OB=6

3

∴∠OAB=60°
∴点M的横坐标为5
∴M(5,

3

当C2(4,0)时,同理可得
第一种情况:H在C2点左侧时,M(4,2

3

第二种情况:H在C2点右侧时,M(
11
2

3
2

综上所述,所求M点的坐标为:M(2,4

3
),M(5,

3
),M(4,2

3
)或M(
11
2

3
2
).

据专家权威分析,试题“如图,在平面直角坐标系xOy中,直线l1:y=-3x+63交x轴、y轴于A、B..”主要考查你对  求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐