如图,在平面直角坐标系中,矩形OABC的边OA=2,0C=6,在OC上取点D将△AOD沿AD翻折,使O点落在AB边上的E点处,将一个足够大的直角三角板的顶点P从D点出发沿线段DA→AB移动,且一-数学
题文
如图,在平面直角坐标系中,矩形OABC的边OA=2,0C=6,在OC上取点D将△AOD沿AD翻折,使O点落在AB边上的E点处,将一个足够大的直角三角板的顶点P从D点出发沿线段DA→AB移动,且一直角边始终经过点D,另一直角边所在直线与直线DE,BC分别交于点M,N. (1)填空:D点坐标是(______,______),E点坐标是(______,______); (2)如图1,当点P在线段DA上移动时,是否存在这样的点M,使△CMN为等腰三角形?若存在,请求出M点坐标;若不存在,请说明理由; (3)如图2,当点P在线段AB上移动时,设P点坐标为(x,2),记△DBN的面积为S,请直接写出S与x之间的函数关系式,并求出S随x增大而减小时所对应的自变量x的取值范围. |
答案
(1)∵将△AOD沿AD翻折,使O点落在AB边上的E点处, ∴∠OAD=∠EAD=45°,DE=OD, ∴OA=OD, ∵OA=2, ∴OD=2, ∴D点坐标是(2,0),DE=OD=2, ∴E点坐标是(2,2), 故答案为:(2,0),(2,2); (2)存在点M使△CMN为等腰三角形,理由如下: 由翻折可知四边形AODE为正方形, 过M作MH⊥BC于H, ∵∠PDM=∠PMD=45°,则∠NMH=∠MNH=45°, NH=MH=4,MN=4
∵直线OE的解析式为:y=x,依题意得MN∥OE, ∴设MN的解析式为y=x+b, 而DE的解析式为x=2,BC的解析式为x=6, ∴M(2,2+b),N(6,6+b), CM=
分三种情况讨论: ①当CM=CN时, 42+(2+b)2=(6+b)2, 解得:b=-2,此时M(2,0); ②当CM=MN时, 42+(2+b)2=(4
解得:b1=2,b2=-6(不合题意舍去), 此时M(2,4); ③当CN=MN时, 6+b=4
解得:b=4
综上所述,存在点M使△CMN为等腰三角形,M点的坐标为: (2,0),(2,4),(2,4
(3)根据题意得: 当0≤x≤2时, ∵∠BPN+∠DPE=90°, ∠BPN+∠BNP=90°, ∴∠DPE=∠BNP, 又∠PED=∠NBP=90°, ∴△DEP∽△PBN, ∴
∴
∴BN=
∴S△DBN=
=
整理得:S=x2-8x+12; 当2<x≤6时, ∵△PBN∽△DEP, ∴
∴
∴BN=
∴S△DBN=
=
整理得:S=-x2+8x-12; 则S与x之间的函数关系式:
①当0≤x≤2时,S=x2-8x+12=(x-4)2-4, 当x≤4时,S随x的增大而减小,即0≤x≤2, ②当2<x≤6时,S=-x2+8x-12=-(x-4)2+4, 当x≥4时,S随x的增大而减小,即4≤x≤6, 综上所述:S随x增大而减小时,0≤x≤2或4≤x≤6. |
据专家权威分析,试题“如图,在平面直角坐标系中,矩形OABC的边OA=2,0C=6,在OC上取点..”主要考查你对 求一次函数的解析式及一次函数的应用 等考点的理解。关于这些考点的“档案”如下:
求一次函数的解析式及一次函数的应用
考点名称:求一次函数的解析式及一次函数的应用
- 待定系数法求一次函数的解析式:
先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。
一次函数的应用:
应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
(1)有图像的,注意坐标轴表示的实际意义及单位;
(2)注意自变量的取值范围。 用待定系数法求一次函数解析式的四个步骤:
第一步(设):设出函数的一般形式。(称一次函数通式)
第二步(代):代入解析式得出方程或方程组。
第三步(求):通过列方程或方程组求出待定系数k,b的值。
第四步(写):写出该函数的解析式。
一次函数的应用涉及问题:
一、分段函数问题
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
合实际。二、函数的多变量问题
解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
求可以反映实际问题的函数三、概括整合
(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
(2)理清题意是采用分段函数解决问题的关键。
生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)一次函数应用常用公式:
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:(x1+x2)/2
3.求与y轴平行线段的中点:(y1+y2)/2
4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
5.求两个一次函数式图像交点坐标:解两函数式
两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
(x,y)为 + ,+(正,正)时该点在第一象限
(x,y)为 - ,+(负,正)时该点在第二象限
(x,y)为 - ,-(负,负)时该点在第三象限
(x,y)为 + ,-(正,负)时该点在第四象限
8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
10.
y=k(x-n)+b就是直线向右平移n个单位
y=k(x+n)+b就是直线向左平移n个单位
y=kx+b+n就是向上平移n个单位
y=kx+b-n就是向下平移n个单位
口决:左加右减相对于x,上加下减相对于b。
11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |