如图,在平面直角坐标系中,矩形OABC的边OA=2,0C=6,在OC上取点D将△AOD沿AD翻折,使O点落在AB边上的E点处,将一个足够大的直角三角板的顶点P从D点出发沿线段DA→AB移动,且一-数学

题文

如图,在平面直角坐标系中,矩形OABC的边OA=2,0C=6,在OC上取点D将△AOD沿AD翻折,使O点落在AB边上的E点处,将一个足够大的直角三角板的顶点P从D点出发沿线段DA→AB移动,且一直角边始终经过点D,另一直角边所在直线与直线DE,BC分别交于点M,N.
(1)填空:D点坐标是(______,______),E点坐标是(______,______);
(2)如图1,当点P在线段DA上移动时,是否存在这样的点M,使△CMN为等腰三角形?若存在,请求出M点坐标;若不存在,请说明理由;
(3)如图2,当点P在线段AB上移动时,设P点坐标为(x,2),记△DBN的面积为S,请直接写出S与x之间的函数关系式,并求出S随x增大而减小时所对应的自变量x的取值范围.
题型:解答题  难度:中档

答案

(1)∵将△AOD沿AD翻折,使O点落在AB边上的E点处,
∴∠OAD=∠EAD=45°,DE=OD,
∴OA=OD,
∵OA=2,
∴OD=2,
∴D点坐标是(2,0),DE=OD=2,
∴E点坐标是(2,2),
故答案为:(2,0),(2,2);

(2)存在点M使△CMN为等腰三角形,理由如下:
由翻折可知四边形AODE为正方形,
过M作MH⊥BC于H,
∵∠PDM=∠PMD=45°,则∠NMH=∠MNH=45°,
NH=MH=4,MN=4

2

∵直线OE的解析式为:y=x,依题意得MN∥OE,
∴设MN的解析式为y=x+b,
而DE的解析式为x=2,BC的解析式为x=6,
∴M(2,2+b),N(6,6+b),
CM=

42+(2+b)2
,CN=6+b,MN=4

2

分三种情况讨论:
①当CM=CN时,
42+(2+b)2=(6+b)2
解得:b=-2,此时M(2,0);
②当CM=MN时,
42+(2+b)2=(4

2
2
解得:b1=2,b2=-6(不合题意舍去),
此时M(2,4);
③当CN=MN时,
6+b=4

2

解得:b=4

2
-6,此时M(2,4

2
-4);
综上所述,存在点M使△CMN为等腰三角形,M点的坐标为:
(2,0),(2,4),(2,4

2
-4);

(3)根据题意得:
当0≤x≤2时,
∵∠BPN+∠DPE=90°,
∠BPN+∠BNP=90°,
∴∠DPE=∠BNP,
又∠PED=∠NBP=90°,
∴△DEP∽△PBN,
PB
DE
=
BN
EP

6-x
2
=
BN
2-x

∴BN=
(2-x)(6-x)
2

∴S△DBN=
1
2
?BN?BE
=
1
2
?
(2-x)(6-x)
2
?4
整理得:S=x2-8x+12;
当2<x≤6时,
∵△PBN∽△DEP,
PB
NB
=
DE
PB

x-2
NB
=
2
6-x

∴BN=
(x-2)(6-x)
2

∴S△DBN=
1
2
?BN?BE,
=
1
2
?
(x-2)(6-x)
2
×4,
整理得:S=-x2+8x-12;
则S与x之间的函数关系式:

S=x2-8x+12(0≤x≤2)
S=-x2+8x-12(2<x≤6)

①当0≤x≤2时,S=x2-8x+12=(x-4)2-4,
当x≤4时,S随x的增大而减小,即0≤x≤2,
②当2<x≤6时,S=-x2+8x-12=-(x-4)2+4,
当x≥4时,S随x的增大而减小,即4≤x≤6,
综上所述:S随x增大而减小时,0≤x≤2或4≤x≤6.

据专家权威分析,试题“如图,在平面直角坐标系中,矩形OABC的边OA=2,0C=6,在OC上取点..”主要考查你对  求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐