如图,在平面直角坐标系中,有一条直线l:y=-33x+4与x轴、y轴分别交于点M、N,一个高为3的等边三角形ABC,边BC在x轴上,将此三角形沿着x轴的正方向平移.(1)在平移过程中,得到-数学
题文
如图,在平面直角坐标系中,有一条直线l:y=-
(1)在平移过程中,得到△A1B1C1,此时顶点A1恰落在直线l上,写出A1点的坐标______; (2)继续向右平移,得到△A2B2C2,此时它的外心P恰好落在直线l上,求P点的坐标; (3)在直线l上是否存在这样的点,与(2)中的A2、B2、C2任意两点能同时构成三个等腰三角形?如果存在,求出点的坐标;如果不存在,说明理由. |
答案
(1)∵等边三角形ABC的高为3, ∴A1点的纵坐标为3, ∵顶点A1恰落在直线l上, ∴3=-
解得;x=
∴A1点的坐标是(
故答案为:(
(2)设P(x,y),连接A2P并延长交x轴于点H,连接B2P, 在等边三角△A2B2C2中,高A2H=3, ∴A2B2=2
∵点P是等边三角形A2B2C2的外心, ∴∠PB2H=30°, ∴PH=1,即y=1, 将y=1代入y=-
解得:x=3
∴P(3
(3)∵点P是等边三角形A2B2C2的外心, ∴△PA2B2,△PB2C2,△PA2C2是等腰三角形, ∴点P满足的条件,由(2)得P(3
由(2)得,C2(4
∴点C2与点M重合, ∴∠PMB2=30°, 设点Q满足的条件,△QA2B2,△B2QC2,△A2QC2能构成等腰三角形, 此时QA2=QB2,B2Q=B2C2,A2Q=A2C2, 作QD⊥x轴与点D,连接QB2, ∵QB2=2
∴QD=3, ∴Q(
设点S满足的条件,△SA2B2,△C2B2S,△C2SA2是等腰三角形, 此时SA2=SB2,C2B2=C2S,C2A2=C2S, 作SF⊥x轴于点F, ∵SC2=2
∴SF=
∴S(4
设点R满足的条件,△RA2B2,△C2B2R,△C2A2R能构成等腰三角形, 此时RA2=RB2,C2B2=C2R,C2A2=C2R, 作RE⊥x轴于点E, ∵RC2=2
∴ER=
∴R(4
答:存在四个点,分别是P(3
|
据专家权威分析,试题“如图,在平面直角坐标系中,有一条直线l:y=-33x+4与x轴、y轴分别..”主要考查你对 求一次函数的解析式及一次函数的应用 等考点的理解。关于这些考点的“档案”如下:
求一次函数的解析式及一次函数的应用
考点名称:求一次函数的解析式及一次函数的应用
- 待定系数法求一次函数的解析式:
先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。
一次函数的应用:
应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
(1)有图像的,注意坐标轴表示的实际意义及单位;
(2)注意自变量的取值范围。 用待定系数法求一次函数解析式的四个步骤:
第一步(设):设出函数的一般形式。(称一次函数通式)
第二步(代):代入解析式得出方程或方程组。
第三步(求):通过列方程或方程组求出待定系数k,b的值。
第四步(写):写出该函数的解析式。
一次函数的应用涉及问题:
一、分段函数问题
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
合实际。二、函数的多变量问题
解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
求可以反映实际问题的函数三、概括整合
(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
(2)理清题意是采用分段函数解决问题的关键。
生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)一次函数应用常用公式:
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:(x1+x2)/2
3.求与y轴平行线段的中点:(y1+y2)/2
4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
5.求两个一次函数式图像交点坐标:解两函数式
两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
(x,y)为 + ,+(正,正)时该点在第一象限
(x,y)为 - ,+(负,正)时该点在第二象限
(x,y)为 - ,-(负,负)时该点在第三象限
(x,y)为 + ,-(正,负)时该点在第四象限
8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
10.
y=k(x-n)+b就是直线向右平移n个单位
y=k(x+n)+b就是直线向左平移n个单位
y=kx+b+n就是向上平移n个单位
y=kx+b-n就是向下平移n个单位
口决:左加右减相对于x,上加下减相对于b。
11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |