已知,在平行四边形OABC中,OA=5,AB=4,∠OCA=90°,动点P从O点出发沿射线OA方向以每秒2个单位的速度移动,同时动点Q从A点出发沿射线AB方向以每秒1个单位的速度移动.设移动的-数学

题文

已知,在平行四边形OABC中,OA=5,AB=4,∠OCA=90°,动点P从O点出发沿射线OA方向以每秒2个单位的速度移动,同时动点Q从A点出发沿射线AB方向以每秒1个单位的速度移动.设移动的时间为t秒.
(1)求直线AC的解析式;
(2)试求出当t为何值时,△OAC与△PAQ相似?
(3)若⊙P的半径为
8
5
,⊙Q的半径为
3
2
;当⊙P与对角线AC相切时,判断⊙Q与直线AC、BC的位置关系,并求出Q点坐标.
题型:解答题  难度:中档

答案

(1)过C点作x轴的垂线,垂足为D点,在平行四边形OABC中,由OA=5,AB=4,∠OCA=90°,得AC=3,
由面积法,得CD×OA=OC×AC,解得CD=
4×3
5
=
12
5

在Rt△OCD中,由勾股定理得OD=

OC2-CD2
=
16
5

∴C(
16
5
12
5
),
又∵A(5,0),
∴直线AC解析式为:y=-
4
3
x+
20
3


(2)当0≤t≤2.5时,P在OA上,若∠OAQ=90°时,
故此时△OAC与△PAQ不可能相似.
当t>2.5时,
①若∠APQ=90°,则△APQ∽△OAC,
AQ
AP
=
OC
OA
=
4
5

2t-5
t
=
4
5

∴t=
25
6

∵t>2.5,
∴t=
25
6
符合条件.
②若∠AQP=90°,则△APQ∽△OAC,
AQ
AP
=
OC
OA
=
4
5

t
2t-5
=
4
5

∴t=
20
3

∵t>2.5,
∴t=
20
3
符合条件.
综上可知,当t=
25
6
20
3
时,△OAC与△APQ相似.

(3)⊙Q与直线AC、BC均相切.
如图,设⊙P与AC相切于点M,则PM∥OC,
PM
OC
=
PA
OA
,即
8
5
×5=PA×4,
解得PA=2,OP=5-2=3,
P点运动时间为3÷2=
3
2
秒,
故Q点运动时间为
3
2
秒,此时AQ=
3
2

BQ=4-
3
2
=
5
2

过Q点作QN⊥BC,垂足为N,则△BQN∽△BCA,
QN
QB
=
AC
BC
,即
QN
5
2
=
3
5

解得QN=
3
2

则AQ=QN,
∵AC⊥AB,
∴⊙Q与直线AC、BC均相切.
此时,Q点坐标为(
31
5
9
10
).

据专家权威分析,试题“已知,在平行四边形OABC中,OA=5,AB=4,∠OCA=90°,动点P从O点出..”主要考查你对  求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐