(1)A、B两村之间的公路进行对接修筑,甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提-数学

题文

(1)A、B两村之间的公路进行对接修筑,甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务由甲工程队单独完成,直到公路修通.如图1甲乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数图象,请根据图象所提供的信息解答下列问题:
①乙工程队每天修公路多少米?
②分别求甲、乙工程队修公路的长度y(米)与施工时间x(天)之间的函数关系式;
③若乙工程队后来进入施工后,不提前离开,直到公路对接完工,那么施工过程共需几天?
(2)如图2直线y=-
1
2
x+1分别与x轴、y轴交于点A、B,在第一象限取点C,使△ABC成为等腰直角三角形;如果在第二象限内有一点P(a,
1
2
),使△ABP的面积与Rt△ABC的面积相等,求a的值.
题型:解答题  难度:中档

答案

(1)①∵乙工程队修了720米,用时9-3=6天,
∴乙工程队每天修公路120米.
②设乙工程队y与x之间的函数关系式为y=kx+b,直线过点(3,0)、(9,720)
代入得y=120x-360(3≤x≤9)
设甲工程队y与x之间的函数关系式为y=kx,由y 求得过点(6,360)
代入得y=60x(0≤x≤15)
③∵乙工程队修了720米,甲工程队修了15×60=900米,
∴公路总长1620米,
前3天甲单独修了180米,
∴甲乙合作修了1440米,
∴(120+60)x=1440,
x=8,
∴这个施工过程共需3+8=11(天)
(2)①由题意得A(2,0)、B(0,1),
∴OA=2,OB=1,
在Rt△AOB中,由勾股定理,得
AB=

5

以A或B为三角形的直角顶点时,
S△ABC=
1
2
(

5
)2=
5
2

连接PA、PB、PO,
则S△PBA=S△PBO+S△ABO-S△POA
=-
a
2
+1-
1
2
=-
a
2
+
1
2

当-
a
2
+
1
2
=
5
2

解得a=-4
②以C为直角顶点时,S△ABC=
5
4

当-
a
2
+
1
2
=
5
4

解得:a=-
3
2

据专家权威分析,试题“(1)A、B两村之间的公路进行对接修筑,甲工程队从A村向B村方向修筑..”主要考查你对  求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)