如图,正方形OABC边长为2,O是直角坐标系的原点,点A,C分别在x轴,y轴上.点P沿着正方形的边,按O→A→B的顺序运动,设点P经过的路程为x,△OPB的面积为y.(1)求出y与x之间的函数-数学

题文

如图,正方形OABC边长为2,O是直角坐标系的原点,点A,C分别在x轴,y轴上.点P沿着正方形的边,按O→A→B的顺序运动,设点P经过的路程为x,△OPB的面积为y.
(1)求出y与x之间的函数关系式,写出自变量x的取值范围;
(2)探索:当y=
1
4
时,点P的坐标;
(3)是否存在经过点(0,-1)的直线平分正方形OABC的面积?如果存在,求出这条直线的解析式;如果不存在,请说明理由.
题型:解答题  难度:中档

答案

(1)分两种情况:
①当点P在线段OA上运动时,如图1,

y=
1
2
x×2,
即y=x,0<x≤2;
②当点P在线段AB上运动时(不含点A),如图2,
y=
1
2
(4-x)×2,
即y=-x+4,2<x<4;
(2)由题意可知:
1
4
=x,
此时,点P(
1
4
,0),
1
4
=-x+4,
x=
15
4

x-2=
7
4

此时,点P(2,
7
4
),
综合(2)中的①,②可得P(
1
4
,0)或P(2,
7
4
);

(3)如图3,存在满足条件的直线.
设这条直线的解析式为y=kx-1,
由于直线平分正方形OABC的面积,可得:OM=BN,延长AB,交直线与点H,
∵△POM≌△HBN,
∴BH=OP=1,
∴H(2,3),
由点H在直线上,得3=2k-1,
∴k=2,
∴所求直线的解析式为y=2x-1,
另法:由直线平分正方形AOCB的面积,
可知,直线过正方形AOCB的中心.
∴直线过(1,1)点,
∴直线的解析式为y=2x-1.

据专家权威分析,试题“如图,正方形OABC边长为2,O是直角坐标系的原点,点A,C分别在x轴..”主要考查你对  求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐