如图,在直角坐标系中,点B、C在x轴的负半轴上,点A在y轴的负半轴上,以AC为直径的圆与AB的延长线交于点D,CD=AO,如果AO>BO,且AO、BO是关于x的二次方程x2-14x+48=0的两个根-数学

题文

如图,在直角坐标系中,点B、C在x轴的负半轴上,点A在y轴的负半轴上,以AC为直径的圆与AB的延长线交于点D,CD=AO,如果AO>BO,且AO、BO是关于x的二次方程x2-14x+48=0的两个根.
(1)求点D的坐标;
(2)定义:在直角坐标系中,有点M(m,n),对于直线y=kx+b,当x=m时,y=km+b>n,则称点M在直线下方;当x=m时,y=km+b=n,则称点M在直线上;当x=m时,y=km+b<n,则称点M在直线上方.
请你根据上述定义解决下列问题:
若点P在直径AC所在直线上,且AC=4AP,直线l经过点P和Q(6,-16),请你判断点D和直线l的位置关系.
题型:解答题  难度:中档

答案

(1)∵AO>BO,且AO、BO是关于x的二次方程x2-14x+48=0的两个根.
∴OA=8,OB=6
设D点坐标为(x,y),
过D作DE⊥x轴,交x轴于E点,连接CD,
∴E为OC的中点,即CE=OE=-x,DE=y,
∵OA=8,OB=6(1分),
在直角三角形CDE中,CD=AO,
根据勾股定理得:CD2=AO2=x2+y2=64①,
又△DEB∽△AOB,
DE
AO
=
EB
OB
,即
y
8
=
-x-6
6
②,
联立①②,解得:x=-9.6,y=4.8,
则点D的坐标(-9.6,4.8)(1分)

(2)第一种情况:
当点P在线段AC上时,点P的坐标为(-4,-6)(1分)
得出直线l的解析式:y=-x-10(1分)
得出点D在直线l的上方.(1分)
第二种情况:
当点P在CA的延长线上时,点P的坐标为(4,-10)(1分)
得出直线l的解析式:y=-3x+2(1分)
得出点D在直线l的下方.(1分)
没有分类的情况下写出上方或下方不给分;有分类但没有说理过程,给答案(2分).

据专家权威分析,试题“如图,在直角坐标系中,点B、C在x轴的负半轴上,点A在y轴的负半轴..”主要考查你对  求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐