下面是某同学在一次作业中的计算摘录:(1)3a+2b=5ab;(2)-5mn3=-m3n;(3)4x3.(-2x2)=-6x5;(4)÷=-2a;(5)(a3)2=a5;(-a)3÷(-a)=-a2其中正确的个数有[]A.1个B.2个C.3个D.-八年级数学
题文
下面是某同学在一次作业中的计算摘录:(1)3a + 2b = 5ab;(2)- 5mn3 =-m3n;(3)4x3. ( -2x2)= -6x5;(4)÷= -2a;(5)(a3)2 = a5; ( - a)3÷(- a)= -a2 其中正确的个数有 |
[ ] |
A.1个 B.2个 C.3个 D.4个 |
答案
A |
据专家权威分析,试题“下面是某同学在一次作业中的计算摘录:(1)3a+2b=5ab;(2)-5mn3=-m..”主要考查你对 整式的除法,整式的加减,整式的乘法 等考点的理解。关于这些考点的“档案”如下:
整式的除法整式的加减整式的乘法
考点名称:整式的除法
整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。单项式和多项式统称为整式。单项式相除,把它们的系数相除,同底数幂的幂相减,作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。 单项式除以多项式,用单项式除以多项式的每一项,再将所得的商相加并合并同类项。
整式的除法法则:
1、同底数的幂相除:法则:同底数的幂相除,底数不变,指数相减。
数学符号表示: (a≠0,m、n为正整数,并且m>n)
2、两个单项式相除,把系数、同底数幂分别相除后,作为商的因式;
对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
3、多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。整式的除法运算:
单项式÷单项式
单项式相除,把系数、同底数幂分别相除后,作为商的因式;
对于只在被除式中含有的字母,则连同它的指数一起作为商的一个因式。
注:单项式除以单项式主要是通过转化为同底数幂的除法解决的。
多项式÷单项式
多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
说明:多项式(没有同类项)除以单项式,结果的项数与多项式的项数相同,不要漏项。
多项式÷单项式
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
单项式除以多项式,用单项式除以多项式的每一项,再将所得的商相加并合并同类项。
考点名称:整式的加减
- 整式的加减:
其实质是去括号和合并同类项,其一般步骤为:
(1)如果有括号,那么先去括号;
(2)如果有同类项,再合并同类项。
注:整式加减的最后结果中不能含有同类项,即要合并到不能再合并为止。 - 整式加减:
整式的加减即合并同类项。把同类项相加减,不能计算的就直接拉下来。
合并同类项时要注意以下三点:
①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准.字母和字母指数;
②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;
③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变。 - 整式的乘除法:
考点名称:整式的乘法
整式的乘法:
包括(单项式)与(单项式)相乘;(单项式)与(多项式)相乘;(多项式)与(多项式)相乘
单项式与单项式相乘的运算法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。整式乘法法则:
1、同底数的幂相乘:
法则:同底数的幂相乘,底数不变,指数相加。数学符号表示:am.an=am+n(其中m、n为正整数)
2、幂的乘方:
法则:幂的乘方,底数不变,指数相乘。数学符号表示:(am)n=amn(其中m、n为正整数)
3、积的乘方:
法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。(即等于积中各因式乘方的积。)
数学符号表示:(ab)n=anbn(其中n为正整数)
4、单项式与单项式相乘:
把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
5、单项式与多项式相乘:
就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
6、多项式与多项式相乘:
先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
7、乘法公式:
平方差公式:(a+b)·(a-b)=a2-b2,
完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。- 整式乘法运算:
单项式乘以单项式法则:
单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式.
注:单项式乘以单项式,实际上是运用了乘法结合律和同底数的幂的运算法则完成的。
①.积的系数等于各因式系数的积,先确定符号,再计算绝对值.这时容易出现的错误是,将系数相乘与指数相加混淆,
如2a3·3a2=6a5,而不要认为是6a6或5a5.
②.相同字母的幂相乘,运用同底数幂的乘法运算性质.
③.只在一个单项式里含有的字母,要连同它的指数作为积的一个因式.
④.单项式乘法法则对于三个以上的单项式相乘同样适用.
⑤.单项式乘以单项式,结果仍是一个单项式.
单项式乘以多项式的运算法则:
单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一项,转化为单项式与单项式的乘法,然后再把所得的积相加.
法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
方法总结:在探究多项式乘以多项式时,是把某一个多项式看成一个整体,利用分配律进行计算,这里再一次说明了整体性思想在数学中的应用。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |