已知a=2-1,b=1+2,则a2b+ab2=______.-数学
题文
已知a=
|
答案
a2b+ab2=ab(a+b)=(
故答案为:2
|
据专家权威分析,试题“已知a=2-1,b=1+2,则a2b+ab2=______.-数学-”主要考查你对 因式分解,二次根式的加减乘除混合运算,二次根式的化简 等考点的理解。关于这些考点的“档案”如下:
因式分解二次根式的加减乘除混合运算,二次根式的化简
考点名称:因式分解
- 定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作把这个多项式分解因式。
它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。 - 因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法,十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。
注意四原则:
1.分解要彻底(是否有公因式,是否可用公式)
2.最后结果只有小括号
3.最后结果中多项式首项系数为正(例如:)不一定首项一定为正。 因式分解中的四个注意:
①首项有负常提负,
②各项有“公”先提“公”,
③某项提出莫漏1,
④括号里面分到“底”。
现举下例,可供参考。
例:
把-a2-b2+2ab+4分解因式。
解:-a2-b2+2ab+4
=-(a2-2ab+b2-4)
=-[(a-b)2-4]
=-(a-b+2)(a-b-2)
这里的“负”,指“负号”。
如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的;这里的“公”指“公因式”。
如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。
分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。
其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。
在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数!
由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”等是一脉相承的。分解步骤:
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解
④分解因式,必须进行到每一个多项式因式都不能再分解为止。
也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要相对合适。”分解因式技巧掌握:
①分解因式是多项式的恒等变形,要求等式左边必须是多项式
②分解因式的结果必须是以乘积的形式表示
③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数
④分解因式必须分解到每个多项式因式都不能再分解为止。
注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。主要方法:
1.提取公因式法:
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
提公因式法基本步骤:
(1)找出公因式
(2)提公因式并确定另一个因式:
①第一步找公因式可按照确定公因式的方法先确定系数再确定字母
②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式
③提完公因式后,另一因式的项数与原多项式的项数相同。
2.公式法:
把乘法公式的平方差公式和完全平方公式反过来,得到因式分解的公式:
平方差公式:a2-b2=(a+b)·(a-b);
完全平方式:a2±2ab+b2=(a±b)2;
立方差公式:。
3.分组分解法:
利用分组分解因式的方法叫做分组分解法,ac+ad+bc+bd=a·(c+d)+b·(c+d)=(a+b)·(c+d)
其原则:
①连续提取公因式法:分组后每组能够分解因式,每组分解因式后,组与组之间又有公因式可提。
②分组后直接运用公式法:分组后各组内可以直接应用公式,各组分解因式后,使组与组之间构成公式的形式,然后用公式法分解因式。
4.十字相乘法:a2+(p+q)·a+p·q=(a+p)·(a+q)。
5.解方程法:
通过解方程来进行因式分解,如
x2+2x+1=0 ,解,得x1=-1,x2=-1,就得到原式=(x+1)×(x+1)
6.待定系数法:
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例:
分解因式x -x -5x -6x-4
分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。
解:
设x -x -5x -6x-4
=(x +ax+b)(x +cx+d)
= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd
所以 解得 a=1,b=1,c=-2,d=-4
则x -x -5x -6x-4 =(x +x+1)(x -2x-4)
考点名称:二次根式的加减乘除混合运算,二次根式的化简
- 二次根式的加减乘除混合运算:
顺序与师叔运算的顺序一样,先乘方,后乘除,最后算加减,有括号的先算括号内的。
①在运算过程中,多项式乘法,乘法公式和有理数(式)中的运算律在二次根式的运算中仍然适用。
②二次根式的加减乘除混合运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”。
③运算结果是根式的,一般应表示为最简二次根式。
二次根式的化简:
先对分子、分母因式分解,能约分的就约分,能开方的就开方,或先对被开方数进行通分,然后再通过分母有理化进行化简。 二次根式混合运算掌握:
1、确定运算顺序。
2、灵活运用运算定律。
3、正确使用乘法公式。
4、大多数分母有理化要及时。
5、在有些简便运算中也许可以约分,不要盲目有理化。
6、字母运算时注意隐含条件和末尾括号的注明。
7、提公因式时可以考虑提带根号的公因式。二次根式化简方法:
二次根式的化简是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。
分母有理化:
分母有理化即将分母从非有理数转化为有理数的过程,以下列出分母有理化的几种方法:
(1)直接利用二次根式的运算法则:
例:
(2)利用平方差公式:
例:
(3)利用因式分解:
例:(此题可运用待定系数法便于分子的分解)
换元法(整体代入法):
换元法即把根式中的某一部分用另一个字母代替的方法,是化简的重要方法之一。
例:在根式中,令,即可得到
原式=√(u2+9-6u)+√(u2+25-10u)=√(u-3)2+√(u-5)2=2u-8=2√(x+2)-8提公因式法:
例:计算
巧构常值代入法:
例:已知x2-3x+1=0,求的值。
分析:已知形如ax2+bx+c=0(x≠0)的条件,所求式子中含有的项,可先将ax2+bx+c=0化为x+=,即先构造一个常数,再代入求值。
解:显然x≠0,x2-3x+1=0化为x+=3。
原式==2.
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |