如图,大正方形是由两个小正方形和两个长方形拼成的.(1)请你用两个不同形式的代数式表示这个大正方形的面积;(2)由(1)可得到关于a、b的等式,利用得到的这个等式计算:4.323-七年级数学
题文
如图,大正方形是由两个小正方形和两个长方形拼成的. (1)请你用两个不同形式的代数式表示这个大正方形的面积; (2)由(1)可得到关于a、b的等式,利用得到的这个等式计算:4.3232+2×4.323×0.677+0.6772. |
答案
解:(1)大正方形的面积为:(a+b)2 四部分的面积的和为:a2+2ab+b2 (2)等式为:(a+b)2 =a2+2ab+b2 ∴4.3232+2×4.323×0.677+0.6772 =(4.323+0.677)2 =52 =25 |
据专家权威分析,试题“如图,大正方形是由两个小正方形和两个长方形拼成的.(1)请你用两..”主要考查你对 完全平方公式,写代数式 等考点的理解。关于这些考点的“档案”如下:
完全平方公式写代数式
考点名称:完全平方公式
- 完全平方公式:
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
(a+b)2=a2+2ab+b2,
(a-b)2=a2-2ab+b2。
(1)公式中的a、b可以是单项式,也就可以是多项式。
(2)不能直接应用公式的,要善于转化变形,运用公式。
该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。该知识点重点是对完全平方公式的熟记及应用。难点是对公式特征的理解(如对公式中积的一次项系数的理解)。 结构特征:
1.左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;
2.左边两项符号相同时,右边各项全用“+”号连接;
左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);
3..公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.
记忆口诀:首平方,尾平方,2倍首尾。使用误解:
①漏下了一次项;
②混淆公式;
③运算结果中符号错误;
④变式应用难于掌握。注意事项:
1、左边是一个二项式的完全平方。
2、右边是二项平方和,加上(或减去)这两项乘积的二倍,a和b可是数,单项式,多项式。
3、不论是还是,最后一项都是加号,不要因为前面的符号而理所当然的以为下一个符号。完全平方公式的基本变形:
(一)、变符号
例:运用完全平方公式计算:
(1)(-4x+3y)2
(2)(-a-b)2
分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计算。
解答:
(1)16x2-24xy+9y2
(2)a2+2ab+b2(二)、变项数:
例:计算:(3a+2b+c)2
分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。所以在运用公式时,(3a+2b+c)2可先变形为[(3a+2b)+c]2,直接套用公式计算。
解答:9a2+12ab+6ac+4b2+4bc+c2(三)、变结构
例:运用公式计算:
(1)(x+y)(2x+2y)
(2)(a+b)(-a-b)
(3)(a-b)(b-a)
分析;本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了,即
(1)(x+y)(2x+2y)=2(x+y)2
(2) (a+b)(-a-b)=-(a+b)2
(3) (a-b)(b-a)=-(a-b)2
考点名称:写代数式
- 代数式:
由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。
数的一切运算规律也适用于代数式。单独的一个数或者一个字母也是代数式。
例如:ax+2b,-2/3,b^2/26,√a+√2等。
带有“(≥)” “=”“≠”等符号的不是代数式
注意:
1、不包括等于号(=、≡)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈。
2、可以有绝对值。例如:|x|,|-2.25| 等。 - 代数式的书写要求:
一、数字与数字相乘时,中间的乘号不能用“? ”代替,更不能省略不写。
如:4乘5,写作4×5,不能写成4?5,更不能写成45
二、数字与字母相乘时,中间的乘号可以省略不写,并且数字放在字母的前面。
如: a的5倍,写作:5a 不要写成a5。
三、两个字母相乘时,中间的乘号可以省略不写,字母无顺序性
如: a乘b ,写成ab或ba
四、当字母和带分数相乘时,要把带分数化成假分数。
如:3 1/2 乘a 写作:7/2 a 不要写成32/1a
五、含有字母的除法运算中,最后结果要写成分数形式,分数线相当于除号。
如:5除以a 写作5/a , 不要写成5÷a ; c除以 d写作 ,不要写成 c÷ d
六、如果代数式后面带有单位名称,是乘除运算结果的直接将单位名称写在代数式后面,若代数式是带加减运算且须注明单位的,要把代数式括起来,后面注明单位。
如:甲同学买了5本书,乙同学买了a 本书,他们一共买了(5+a )本。 代数式的书写格式:
(1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;
(2)数字要写在前面;
(3)带分数一定要写成假分数;
(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;
(5)式子后面有单位时,和差形式的代数式要在单位前把代数式括起来。- 代数式:
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |