当x为何有理数时,代数式9x2+23x-2的值恰为两个连续正偶数的乘积?-数学
题文
当x为何有理数时,代数式9x2+23x-2的值恰为两个连续正偶数的乘积? |
答案
设两个偶数为2n,2n+2(n>0),则9x2+23x-2=2n(2n+2), 即9x2+23x-2-2n(2n+2)=0. x为有理数,则方程的△为完全平方数, △=232+4×9×[2+2n(2n+2))]=36(4n2+4n+1)+565=[6(2n+1)]2+565, 设△=m2(不妨设m≥0), m2-[6(2n+1)]2=(m+12n+6)(m-12n-6)=565=565×1=113×5, 当m+12n+6=565时,m-12n-6=1解得m=283,n=23; 当m+12n+6=113时,有m-12n-6=5解得m=59,n=4; 当n=23时,9x2+23x-2=46×48,x=-17或x=
当n=4时,9x2+23x-2=8×10,x=2或x=-
|
据专家权威分析,试题“当x为何有理数时,代数式9x2+23x-2的值恰为两个连续正偶数的乘积..”主要考查你对 完全平方公式,一元二次方程根的判别式 等考点的理解。关于这些考点的“档案”如下:
完全平方公式一元二次方程根的判别式
考点名称:完全平方公式
- 完全平方公式:
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
(a+b)2=a2+2ab+b2,
(a-b)2=a2-2ab+b2。
(1)公式中的a、b可以是单项式,也就可以是多项式。
(2)不能直接应用公式的,要善于转化变形,运用公式。
该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。该知识点重点是对完全平方公式的熟记及应用。难点是对公式特征的理解(如对公式中积的一次项系数的理解)。 结构特征:
1.左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;
2.左边两项符号相同时,右边各项全用“+”号连接;
左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);
3..公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.
记忆口诀:首平方,尾平方,2倍首尾。使用误解:
①漏下了一次项;
②混淆公式;
③运算结果中符号错误;
④变式应用难于掌握。注意事项:
1、左边是一个二项式的完全平方。
2、右边是二项平方和,加上(或减去)这两项乘积的二倍,a和b可是数,单项式,多项式。
3、不论是还是,最后一项都是加号,不要因为前面的符号而理所当然的以为下一个符号。完全平方公式的基本变形:
(一)、变符号
例:运用完全平方公式计算:
(1)(-4x+3y)2
(2)(-a-b)2
分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计算。
解答:
(1)16x2-24xy+9y2
(2)a2+2ab+b2(二)、变项数:
例:计算:(3a+2b+c)2
分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。所以在运用公式时,(3a+2b+c)2可先变形为[(3a+2b)+c]2,直接套用公式计算。
解答:9a2+12ab+6ac+4b2+4bc+c2(三)、变结构
例:运用公式计算:
(1)(x+y)(2x+2y)
(2)(a+b)(-a-b)
(3)(a-b)(b-a)
分析;本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了,即
(1)(x+y)(2x+2y)=2(x+y)2
(2) (a+b)(-a-b)=-(a+b)2
(3) (a-b)(b-a)=-(a-b)2
考点名称:一元二次方程根的判别式
- 根的判别式:
一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
定理1 ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
定理2 ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
定理3 ax2+bx+c=0(a≠0)中,△<0方程没有实数根。
根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
定理4 ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
定理5 ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
定理6 ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
注意:(1)再次强调:根的判别式是指△=b2-4ac。
(2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
(3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
(4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。 - 根的判别式有以下应用:
①不解一元二次方程,判断根的情况。
②根据方程根的情况,确定待定系数的取值范围。
③证明字母系数方程有实数根或无实数根。
④应用根的判别式判断三角形的形状。
⑤判断当字母的值为何值时,二次三项是完全平方式。
⑥可以判断抛物线与直线有无公共点。
⑦可以判断抛物线与x轴有几个交点。
⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |