x+1x-3在实数范围内有意义,则x的取值范围是()A.x≥-1B.x>-1C.x≥1且x≠3D.x≥-1且x≠3-数学
题文
|
答案
由题意得:x+1≥0;x-3≠0, 解得x≥-1且x≠3, 故选D. |
据专家权威分析,试题“x+1x-3在实数范围内有意义,则x的取值范围是()A.x≥-1B.x>-1C.x≥1..”主要考查你对 分式的定义 ,二次根式的定义 等考点的理解。关于这些考点的“档案”如下:
分式的定义 二次根式的定义
考点名称:分式的定义
- 分式的定义:
一般地,用A、B表示两个整式,A÷B就可以表示成的形式,如果B中含有字母,式子就叫做分式。
其中,A叫做分式的分子,B叫做分式的分母。分式和整式通称为有理式。
注:
(1)分式的分母中必须含有字母;
(2)分母的值不能为零,如果分母的值为零,那么分式无意义。 - 分式的概念包括3个方面:
①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;
②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;
③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。
分式有意义的条件:
(1)分式有意义条件:分母不为0;
(2)分式无意义条件:分母为0;
(3)分式值为0条件:分子为0且分母不为0;
(4)分式值为正(负)数条件:分子分母同号时,分式值为正;分子分母异号时,分式值为负 。 - 分式的区别概念:
分式与分数的区别与联系:
a.分式与分数在形式上是一致的,都有一条分数线,相当于除法的“÷”,都有分子和分母,都可以表示成(B≠0)的形式;
b.分式中含有字母,由于字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况。
整式和分式统称为有理式。
带有根号且根号下含有字母的式子叫做无理式。
无限不循环小数也是无理式
无理式和有理式统称代数式
考点名称:二次根式的定义
- 二次根式:
我们把形如叫做二次根式。
二次根式必须满足:
含有二次根号“”;
被开方数a必须是非负数。
确定二次根式中被开方数的取值范围:
要是二次根式有意义,被开方数a必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围。 - 二次根式性质:
(1)a≥0 ; ≥0 (双重非负性 );
(2);
(3)
0(a=0);
(4);
(5)。 二次根式判定:
①二次根式必须有二次根号,如,等;
②二次根式中,被开方数a可以是具体的一个数,也可以是代数式;
③二次根式定义中a≥0 是定义组成的一部分,不能省略;
④二次根式是一个非负数;
⑤二次根式与算术平方根有着内在的联系,(a≥0 )就表示a的算术平方根。
二次根式的应用:
主要体现在两个方面:
(1)利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;
(2)利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |