若2xyx+y=1a2-b2,yzy+z=1a2,2xzx+z=1a2+b2,xyzxy+yz+zx=110,则|a|=______.-数学

首页 > 考试 > 数学 > 初中数学 > 分式的基本性质/2019-04-06 / 加入收藏 / 阅读 [打印]

题文

2xy
x+y
=
1
a2-b2
yz
y+z
=
1
a2
2xz
x+z
=
1
a2+b2
xyz
xy+yz+zx
=
1
10
,则|a|=______.
题型:填空题  难度:中档

答案

2xy
x+y
=
1
a2-b2

即:
2
1
y
+
1
x
=
1
a2-b2

1
y
+
1
x
=2a2-2b2(1),
同理:
1
z
+
1
y
=a2(2),
1
z
+
1
x
=2a2+2b2(3),
1
x
+
1
y
+
1
z
=10(4),
(1)+(2)+(3)得:2(
1
x
+
1
y
+
1
z
)=5a2(5),
把(4)代入(5)得:20=5a2
解得:|a|=2.
故答案为:2.

据专家权威分析,试题“若2xyx+y=1a2-b2,yzy+z=1a2,2xzx+z=1a2+b2,xyzxy+yz+zx=110,..”主要考查你对  分式的基本性质 ,分式的加减乘除混合运算及分式的化简,一元二次方程的解法  等考点的理解。关于这些考点的“档案”如下:

分式的基本性质 分式的加减乘除混合运算及分式的化简一元二次方程的解法

考点名称:分式的基本性质

  • 分式的基本性质:
    分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
    (C≠0),其中A、B、C均为整式。

  • 分式的符号法则:一个分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

    约分:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式约去,这种变形称为分式的约分。
    分式的约分步骤:
    (1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去;
    (2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。

    通分:根据分式的基本性质,把分子、分母同时乘以适当的整式,把几个异分母的分式转化为与原来的分式相等的同分母的分式,叫做分式的通分。 分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母;同时各分式按照分母所扩大的倍数,相应扩大各自的分子.

考点名称:分式的加减乘除混合运算及分式的化简

  • 分式的加减乘除混合运算:
    分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。

    分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。

  • 分式的混合运算:
    在解答分式的乘除法混合运算时,注意两点,就可以了:
    注意运算的顺序:按照从左到右的顺序依次计算;
    注意分式乘除法法则的灵活应用。

考点名称:一元二次方程的解法

  • 一元二次方程的解:
    能够使方程左右两边相等的未知数的值叫做方程的解。
    解一元二次方程方程:
    求一元二次方程解的过程叫做解一元二次方程方程。

  • 韦达定理:
    一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到)
    一般式:ax2+bx+c=0的两个根x1和x2关系:
    x1+x2= -b/a
    x1·x2=c/a

  • 一元二次方程的解法:
    1、直接开平方法
    利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
    直接开平方法适用于解形如的一元二次方程,根据平方根的定义可知,x+a 是b的平方根,当时,;当b<0时,方程没有实数根。
    用直接开平方法求一元二次方程的根,一定要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数,零的平方根是零,负数没有平方根。

    2、配方法
    配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
    配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有

    3、公式法
    公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
    一元二次方程 的求根公式:
    求根公式是专门用来解一元二次方程的,故首先要求a≠0;有因为开平方运算时,被开方数必须是非负数,所以第二个条件是b2-4ac≥0。即求根公式使用的前提条件是a≠0且b2-4ac≥0。

    4、因式分解法
    因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。