下列计算中,则正确的有()①4(m+n)4m2+8mn+4n2=1m+n;②x+y+1-x+y+1=-1;③(a+b)÷(a+b)?1a+b=a+b;④--x+11-x2=-1x+1.A.1个B.2个C.3个D.4个-数学

首页 > 考试 > 数学 > 初中数学 > 分式的基本性质/2019-04-06 / 加入收藏 / 阅读 [打印]

题文

下列计算中,则正确的有(  )
4(m+n)
4m2+8mn+4n2
=
1
m+n
;②
x+y+1
-x+y+1
=-1;③(a+b)÷(a+b)?
1
a+b
=a+b;④-
-x+1
1-x2
=-
1
x+1
A.1个B.2个C.3个D.4个
题型:单选题  难度:偏易

答案

①原式=
4(m+n)
(2m+2n)2
=
1
m+n
,本选项正确;
②原式不能约分,本选项错误;
③原式=1?
1
a+b
=
1
a+b
,本选项错误;
④原式=
x-1
(1+x)(1-x)
=-
x-1
(x+1)(x-1)
=-
1
x+1
,本选项正确,
则正确的个数为2个.
故选B.

据专家权威分析,试题“下列计算中,则正确的有()①4(m+n)4m2+8mn+4n2=1m+n;②x+y+1-x+y+..”主要考查你对  分式的基本性质 ,分式的乘除  等考点的理解。关于这些考点的“档案”如下:

分式的基本性质 分式的乘除

考点名称:分式的基本性质

  • 分式的基本性质:
    分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
    (C≠0),其中A、B、C均为整式。

  • 分式的符号法则:一个分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

    约分:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式约去,这种变形称为分式的约分。
    分式的约分步骤:
    (1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去;
    (2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。

    通分:根据分式的基本性质,把分子、分母同时乘以适当的整式,把几个异分母的分式转化为与原来的分式相等的同分母的分式,叫做分式的通分。 分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母;同时各分式按照分母所扩大的倍数,相应扩大各自的分子.

考点名称:分式的乘除

  • 分式的乘除法则:
    1、分式的乘法法则:
    分式乘分式,用分子的积作为积的分子,分母的积作为分母。
    用字母表示为:
    2、分式的除法法则:
    分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘;除以一个分式,等于乘以这个分式的倒数。
    用式子表示为:(b,c,d均不为零)
    3、分式的乘方法则:分式乘方要把分子、分母分别乘方。
    用式子表示为:(n为正整数),其中b≠0,a,b可以代表数,也可以代表代数式。

  •  

  • 分式乘除的解题步骤:
    分式乘法:
    (1)先确定积的符号:数出整个参与运算的式子中负号的个数,如果有偶数个负号,积为正;
    如果有奇数个负号,积为负;
    (2)计算分子与分子的积;
    (3)计算分母与分母的积;
    (4)把积中的分子,分母进行约分,化成最简分式或整式。
    在解题时,这些步骤是连贯的。

    分式除法
    要注意两个变化:
    一是运算符号的变化,由原来的除法运算变成乘法运算;
    二是除式的分子、分母位置的变化,由原来的分子变成乘法中的分母,原来的分母变成乘法中的分子。
    同学们也可以这样来理解这条法则:
    两个分式相除,用被除式的分子乘以除式的分母,作为商的分子,用被除式的分母乘以除式的分子,作为商的分母。
    这样,就和分式的乘法法则在表述形式上相近了,就好记忆些。

    基本步骤:
    (1)先确定积的符号:数出整个参与运算的式子中负号的个数,如果有偶数个负号,积为正;
    如果有奇数个负号,积为负;
    (2)计算被除式的分子与除式的分母的积,作为商的分子;
    (3)计算被除式的分母与除式的分子的积,,作为商的分母;
    (4)把商中的分子,分母进行约分,化成最简分式或整式。
    此法,有点十字相乘的思想。就像比例的计算,内项之积为分子,外项之积为分母。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐