已知a,b,c,d都不等于0,并且ab=cd,根据分式的基本性质、等式的基本性质及运算法则,探究下面各组中的两个分式之间有什么关系?然后选择其中一组进行具体说明.(1)ac和bd;-数学
题文
已知a,b,c,d都不等于0,并且
(1)
(提示:可以先用具体数字试验,再对发现的规律进行证明.) |
答案
例如:取a=1,b=2,c=3,d=6,有
则(1)
(2)
(3)
观察发现各组中的两个分式相等. 现选择第(2)组进行说明证明. 已知a,b,c,d都不等于0,并且
所以有:
所以有:
|
据专家权威分析,试题“已知a,b,c,d都不等于0,并且ab=cd,根据分式的基本性质、等式..”主要考查你对 分式的基本性质 ,等式的性质 等考点的理解。关于这些考点的“档案”如下:
分式的基本性质 等式的性质
考点名称:分式的基本性质
- 分式的基本性质:
分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
即,(C≠0),其中A、B、C均为整式。 - 分式的符号法则:一个分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
约分:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式约去,这种变形称为分式的约分。
分式的约分步骤:
(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去;
(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
通分:根据分式的基本性质,把分子、分母同时乘以适当的整式,把几个异分母的分式转化为与原来的分式相等的同分母的分式,叫做分式的通分。 分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母;同时各分式按照分母所扩大的倍数,相应扩大各自的分子.
考点名称:等式的性质
- 等式:
含有等号的式子叫做等式(数学术语)。
形式:把相等的两个数(或字母表示的数)用“=”连接起来。
等式可分为矛盾等式和条件等式。矛盾等式就是左右两边不相等的"等式"。也就是不成立的等式,比如5+2=8,实际上5+2=7,所以5+2=8是一个矛盾等式.有些式子无法判断是不是矛盾等式,比如x-9=2,只有x=11时这个等式才成立(这样的等式叫做条件等式),x≠11时,这个等式就是矛盾等式。 - 等式的性质:
1.等式两边同加上(或减去)同一个数或同一个整式,所得结果仍是等式。
即若a=b,则a±m=b±m。
2.等式两边同乘以(或除以)同一个数(除数不能为零),所得结果仍是等式。
即若a=b,则am=bm,(m≠0)。
3.等式具有传递性。
若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an
4.等式两边同时乘方(或开方),两边依然相等若a=b 那么有a^c=b^c 或(c次根号a)=(c次根号b)
5.等式的对称性(若a=b,则b=a)。
等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质。如移项,运用了等式的性质1;去分母,运用了等式的性质2。
运用等式的性质,涉及除法时,要注意转换后,除数不能为0,否则无意义。 拓展
1:等式两边同时被一个数或式子减,结果仍相等。
如果a=b,那么c-a=c-b
2:等式两边取相反数,结果仍相等。
如果a=b,那么-a=-b
3:等式两边不等于0时,被同一个数或式子除,结果仍相等。
如果a=b≠0,那么c/a=c/b
4:等式两边不等于0时,两边取倒数,结果仍相等。
如果a=b≠0,那么1/a=1/b
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |