约分:(1)-35a4b3c21a2b4d,(2)x2-(y-z)2(x+y)2-z2.-数学

首页 > 考试 > 数学 > 初中数学 > 分式的基本性质/2019-04-06 / 加入收藏 / 阅读 [打印]

题文

约分:
(1)
-35a4b3c
21a2b4d

(2)
x2-(y-z)2
(x+y)2-z2
题型:解答题  难度:中档

答案

(1)原式=
-7a2b3?5a2c
7a2b3?3bd
=-
5a2c
3db


(2)原式=
(x+y-z)(x-y+z)
(x+y+z)(x+y-z)
=
x-y+z
x+y+z

据专家权威分析,试题“约分:(1)-35a4b3c21a2b4d,(2)x2-(y-z)2(x+y)2-z2.-数学-”主要考查你对  分式的基本性质   等考点的理解。关于这些考点的“档案”如下:

分式的基本性质

考点名称:分式的基本性质

  • 分式的基本性质:
    分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
    (C≠0),其中A、B、C均为整式。

  • 分式的符号法则:一个分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

    约分:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式约去,这种变形称为分式的约分。
    分式的约分步骤:
    (1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去;
    (2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。

    通分:根据分式的基本性质,把分子、分母同时乘以适当的整式,把几个异分母的分式转化为与原来的分式相等的同分母的分式,叫做分式的通分。 分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母;同时各分式按照分母所扩大的倍数,相应扩大各自的分子.