(1)解不等式,并把解集表示在数轴上:;(2)解分式方程:。-八年级数学

首页 > 考试 > 数学 > 初中数学 > 解分式方程/2019-04-08 / 加入收藏 / 阅读 [打印]

题文

(1)解不等式,并把解集表示在数轴上:

(2)解分式方程:
题型:计算题  难度:中档

答案

解:(1)2x>8-(x+2)
2x>8-x-2
x>2
如图:

(2)方程两边同乘x(x-1),得:
x2-2(x-1)=x(x-1)
解这个方程得:x=2
经检验:x=2是原方程的根
∴原方程的解为x=2。

据专家权威分析,试题“(1)解不等式,并把解集表示在数轴上:;(2)解分式方程:。-八年级数..”主要考查你对  解分式方程,数轴,一元一次不等式的解法  等考点的理解。关于这些考点的“档案”如下:

解分式方程数轴一元一次不等式的解法

考点名称:解分式方程

  • 解法:
    解分式方程的基本思想是把分式方程转化为整式方程,其一般步骤是:
    (1)去分母:分式方程两边同乘以方程中各分母的最简公分母,把分式方程转化为整式方程。
    (最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂)
    (2)解方程:解整式方程,得到方程的根;
    (3)验根:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;
    否则,这个解不是原分式方程的解,是原分式方程的增根。
    如果分式本身约分了,也要带进去检验。
    在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。
    一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.
    注意:
    (1)注意去分母时,不要漏乘整式项。
    (2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。
    (3)増根使最简公分母等于0。

    分式方程的特殊解法:
    换元法:
    换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

  • 解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法。
    解分式方程注意:
    ①解分式方程的基本思想是把分式方程转化为整式方程,通过解整式方程进一步求得分式方程的解;
    ②用分式方程中的最简公分母同乘方程的两边,从而约去分母,但要注意用最简公分母乘方程两边各项时,切勿漏项;
    ③解分式方程可能产生使分式方程无意义的情况,那么检验就是解分式方程的必要步骤。

考点名称:数轴

  • 数轴定义:
    规定了唯一的原点,正方向和单位长度的一条直线叫做数轴。
    数轴具有三要素:
    原点、正方向和单位长度,三者缺一不可。
    数轴是直线,可以向两方无限延伸,因此所有的有理数都可用数轴上的点来表示。

  • 用数轴上的点表示有理数:
    每一个有理数都可用数轴上的点来表示,表示正数的点在数轴原点的右边,表示负数的点在数轴原点的左边,原点表示数0。
    1.数轴上的点表示的数不一定都是有理数,还可能是无理数,但有理数都可用数轴上的点来表示。
    2.表示正数的点都在原点右边,表示负数的点都在原点左边。
    3.数轴上的点表示的数,右边的点表示的数总比左边的点表示的数大,因此,可借助数轴比较有理数的大小。

  • 数轴的画法
    1.画一条直线(一般画成水平的直线);
    2.在直线上根据需要选取一点为原点(在原点下面标上“0”);
    3.确定正方向(一般规定向右为正,并用箭头表示出来);
    4.选取适当的长度为单位长度,
    从原点向右,每隔一个单位长度取一点,依次表示1,2,3,…;
    从原点向左,用类似的方法依次表示-1,-2,-3,…。

  • 数轴的应用范畴:
    符号相反的两个数互为相反数,零的相反数是零。(如2的相反—2)
    在数轴上离开原点的距离就叫做这个数的绝对值。一个正数的绝对值是它本身,一个负数的相反数是它的正数,0的绝对值是0。

考点名称:一元一次不等式的解法

  • 一元一次不等式的解集:
    一个有未知数的不等式的所有解,组成这个不等式的解集。例如﹕
    不等式x-5≤-1的解集为x≤4;
    不等式x﹥0的解集是所有正实数。

    求不等式解集的过程叫做解不等式。
    将不等式化为ax>b的形式
    (1)若a>0,则解集为x>b/a
    (2)若a<0,则解集为x<b/a

    一元一次不等式的特殊解:
    不等式的解集一般是一个取值范围,但有时需要求未知数的某些特殊解,如求正数解、整数解、最大整数解等,解答这类问题关键是明确解的特征。

  • 不等式的解与解集:
    不等式成立的未知数的值叫做不等式的解。如x=1是x+2>1的解
    ①不等式的解是指某一范围内的某个数,用它来代替不等式中的未知数,不等式成立。
    ②要判断某个未知数的值是不是不等式的解,可直接将该值代入等式的左、右两边,看不等式是否成立,若成立,则是;否则不是。
    ③一般地,一个不等式的解不止一个,往往有无数个,如所有大于3的数都是x>3的解,但也存在特殊情况,如|x|≦0,就只有一个解,为x=0

    不等式的解集和不等式的解是两个不同的概念。
    ①不等式的解集一般是一个取值范围,在这个范围内的每一个数值都是不等式的一个解,不等式一般有无数个解。
    ②不等式的解集包含两方面的意思:
    解集中的任何一个数值,都能使不等式成立;解集外的任何一个数值,都不能使不等式成立。(即不等式不成立)
    ③不等式的解集可以在数轴上直观的表示出来,如不等式x-1<2的解集是x<3,可以用数轴上表示3的点左边部分来表示,在数轴上表示3的点的位置上画空心圆圈,表示不包括这一点。

  • 一元一次不等式的解法
    解一元一次不等式与解一元一次方程的方法步骤类似,只是在利用不等式基本性质3对不等式进行变形时,要改变不等式的符号。
    有两种解题思路:
    (1)可以利用不等式的基本性质,设法将未知数保留在不等式的一边,其他项在另一边;
    (2)采用解一元一次方程的解题步骤:去分母、去括号、移项、合并同类项、系数化为1等步骤。 

    解一元一次不等式的一般顺序:
    (1)去分母 (运用不等式性质2、3)   
    (2)去括号   
    (3)移项 (运用不等式性质1)   
    (4)合并同类项。   
    (5)将未知数的系数化为1 (运用不等式性质2、3)   
    (6)有些时候需要在数轴上表示不等式的解集
     
    不等式解集的表示方法:
    (1) 用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来。
    例如:x-1≤2的解集是x≤3。   
    (2) 用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解。
    用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐