(1)化简:(x2-4x2-4x+4+2-xx+2)÷xx-2;(2)解分式方程:3xx+2+2x-2=3.-数学

首页 > 考试 > 数学 > 初中数学 > 解分式方程/2019-04-08 / 加入收藏 / 阅读 [打印]

题文

(1)化简:(
x2-4
x2-4x+4
+
2-x
x+2
)÷
x
x-2

(2)解分式方程:
3x
x+2
+
2
x-2
=3.
题型:解答题  难度:中档

答案

(1)原式=[
(x+2)(x-2)
(x-2)2
+
2-x
x+2
]?
x-2
x

=
(x+2)2-(x-2)2
(x+2)(x-2)
?
x-2
x

=
4x
(x+2)(x-2)
?
x-2
x

=
4
x+2


(2)去分母得:3x(x-2)+2(x+2)=3(x2-4),
去括号得:3x2-6x+2x+4=3x2-12,
移项合并得:-4x=-16,
解得:x=4,
经检验x=4是分式方程的解.

据专家权威分析,试题“(1)化简:(x2-4x2-4x+4+2-xx+2)÷xx-2;(2)解分式方程:3xx+2+2x-2=..”主要考查你对  解分式方程,分式的加减乘除混合运算及分式的化简  等考点的理解。关于这些考点的“档案”如下:

解分式方程分式的加减乘除混合运算及分式的化简

考点名称:解分式方程

  • 解法:
    解分式方程的基本思想是把分式方程转化为整式方程,其一般步骤是:
    (1)去分母:分式方程两边同乘以方程中各分母的最简公分母,把分式方程转化为整式方程。
    (最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂)
    (2)解方程:解整式方程,得到方程的根;
    (3)验根:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;
    否则,这个解不是原分式方程的解,是原分式方程的增根。
    如果分式本身约分了,也要带进去检验。
    在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。
    一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.
    注意:
    (1)注意去分母时,不要漏乘整式项。
    (2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。
    (3)増根使最简公分母等于0。

    分式方程的特殊解法:
    换元法:
    换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

  • 解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法。
    解分式方程注意:
    ①解分式方程的基本思想是把分式方程转化为整式方程,通过解整式方程进一步求得分式方程的解;
    ②用分式方程中的最简公分母同乘方程的两边,从而约去分母,但要注意用最简公分母乘方程两边各项时,切勿漏项;
    ③解分式方程可能产生使分式方程无意义的情况,那么检验就是解分式方程的必要步骤。

考点名称:分式的加减乘除混合运算及分式的化简

  • 分式的加减乘除混合运算:
    分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。

    分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。

  • 分式的混合运算:
    在解答分式的乘除法混合运算时,注意两点,就可以了:
    注意运算的顺序:按照从左到右的顺序依次计算;
    注意分式乘除法法则的灵活应用。