某灯具店采购了一批某种型号的节能灯,共用去400元.在搬运过程中不慎打碎了5盏,该店把余下的灯每盏以超出进价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与-数学

首页 > 考试 > 数学 > 初中数学 > 分式方程的应用/2019-04-08 / 加入收藏 / 阅读 [打印]

题文

某灯具店采购了一批某种型号的节能灯,共用去400元.在搬运过程中不慎打碎了5盏,该店把余下的灯每盏以超出进价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏.求每盏灯的进价.
题型:解答题  难度:中档

答案

设每盏灯的进价为x元.
依题意,列方程:(
400
x
-5)?(x+4)=(
400
x
+9)?x.
解方程得:x1=10,x2=-
80
7
(舍去).
经检验,x=10符合题意.
答:每盏灯的进价为10元.

据专家权威分析,试题“某灯具店采购了一批某种型号的节能灯,共用去400元.在搬运过程中..”主要考查你对  分式方程的应用,一元二次方程的解法  等考点的理解。关于这些考点的“档案”如下:

分式方程的应用一元二次方程的解法

考点名称:分式方程的应用

  • 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。
    列分式方程解应用题的一般步骤是:
    ①找等量关系(审):理解题意,弄清具体情境中的已知量与未知量以及它们之间的基本关系;
    ②设:设未知数,用含x(或其他字母)表示某个未知数,由该未知数与其他数量的关系,写出表示相关量的式子;
    ③列:找出相等关系,列出分式方程;
    ④解:解这个分式方程;
    ⑤检验:双重检验,先检验是否为增根,再检验是否符合题意;
    ⑥答:写出答案。

    例题
    南宁到昆明西站的路程为828KM,一列普通列车和一列直达快车都从南宁开往昆明。直达快车的速度是普通快车速度的1.5倍,普通快车出发2H后,直达快车出发,结果比普通列车先到4H,求两次的速度.
    设普通车速度是x千米每小时则直达车是1.5x
    由题意得:
    828/x-828/1.5x=6 ,
    (828×1.5-828)/1.5x=6 ,
    414/1.5=6x,
    x=46, 1.5x=69
    答:普通车速度是46千米每小时,直达车是69千米每小时。

    无解的含义:
    1.解为增根。
    2.整式方程无解。(如:0x不等于0.)

  • 用分式解应用题的常见题型:
    (1)行程问题有路程、时间和速度三个量,其关系式是路程=速度×时间,一般式以时间为等量关系。
    (2)工程问题有工作效率、工作时间和工作总量三个量,其关系式是工作总量=工作效率×工作时间。
    (3)增长率问题,其等量关系式是原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量。

考点名称:一元二次方程的解法

  • 一元二次方程的解:
    能够使方程左右两边相等的未知数的值叫做方程的解。
    解一元二次方程方程:
    求一元二次方程解的过程叫做解一元二次方程方程。

  • 韦达定理:
    一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到)
    一般式:ax2+bx+c=0的两个根x1和x2关系:
    x1+x2= -b/a
    x1·x2=c/a

  • 一元二次方程的解法:
    1、直接开平方法
    利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
    直接开平方法适用于解形如的一元二次方程,根据平方根的定义可知,x+a 是b的平方根,当时,;当b<0时,方程没有实数根。
    用直接开平方法求一元二次方程的根,一定要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数,零的平方根是零,负数没有平方根。

    2、配方法
    配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
    配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有

    3、公式法
    公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
    一元二次方程 的求根公式:
    求根公式是专门用来解一元二次方程的,故首先要求a≠0;有因为开平方运算时,被开方数必须是非负数,所以第二个条件是b2-4ac≥0。即求根公式使用的前提条件是a≠0且b2-4ac≥0。

    4、因式分解法
    因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。